Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-14T19:32:32.348Z Has data issue: false hasContentIssue false

Damage Removal Processes in Ion Implanted, Rapidly Annealed GaAs

Published online by Cambridge University Press:  26 February 2011

D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
R. Hull
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
J. S. Williams
Affiliation:
Microelectronics Technology Centre, Royal Melbourne Institute of Technology, Melbourne, Victoria 3000, Australia
Get access

Abstract

The removal of lattice damage and consequent activation by rapid thermal annealing of implanted Si, Se, Zn and Be in GaAs was investigated by capacitance-voltage profiling, Hall measurements, transmission electron microscopy (TEM), secondary ion mass spectrometry and Rutherford backscattering. The lighter species show optimum electrical characteristics at lower annealing temperatures (˜850°C for Be, ˜950°C for Si) than the heavier species (˜900°C for Zn, ˜1000°C for Se), consistent with the amount of lattice damage remaining after annealing. TEM reveals the formation of high densities (107 cm−2) of dislocation loops after 800°C, 3s anneals of high dose (1×1015 cm−2) implanted GaAs, which are gradually reduced in density after higher temperatures anneals (˜1000°C). The remaining loops do not appear to effect the electrical activation or carrier mobility in the implanted layer, the latter being comparable to bulk values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Donnelly, J. P., Nucl. Instr. Meth. 182 553 (1981).CrossRefGoogle Scholar
2. Eisen, F. H., Rad. Effects 47, 99 (1980).CrossRefGoogle Scholar
3. Davies, D. E., Nucl. Instr. Meth. B7 395 (1985).Google Scholar
4. Barrett, N. J., Grange, J. D., Sealy, B. J. and Stephens, K. G.. J. Appl. Phys. 56 3503 (1984).CrossRefGoogle Scholar
5. Kuzuhara, M., Kohzu, H. and Takayama, Y., Appl. Phys. Lett. 41 755 (1984).CrossRefGoogle Scholar
6. Farley, C. W. and Streetman, B. G., J. Electron. Mat. 13 401 (1984).CrossRefGoogle Scholar
7. Williams, J. S. and Pearton, S. J., Proc. Mat. Res. Soc. 35 427 (1985).CrossRefGoogle Scholar
8. A. G. Associates, Sunnyvale, CA 94089.Google Scholar
9. Rumsby, R., Ware, R. M., Smith, B., Tyhberg, M., Brogel, M. R. and Foulkes, E. J., Proceedings of the GaAs IC Symposium, Phoenix, Arizona 1983, p. 34.Google Scholar
10. Miyazawa, S., Ishii, Y., Ishida, S. and Nanishi, Y., Appl. Phys. Lett. 43 853 (1983).CrossRefGoogle Scholar
11. Wang, F. C. and Bujatti, M., IEEE Electron. Dev. Lett. EDL–5 188 (1984).CrossRefGoogle Scholar
12. Kular, S. S., Sealy, B. J., Stephens, K. G., Sadana, D. K. and Booker, G. R., Solid-State Electron 23 831 (1980).CrossRefGoogle Scholar
13. Ormon-Rossiter, K. G., Johnson, S. T. and Williams, J. S., Nucl. Instr. Meth. B7 448 (1985).CrossRefGoogle Scholar
14. Schneider, J., Semi-Insulating III-V Materials, ed. Makram-Ebeid, S. and Tuck, B. (Shiva, Cheshire, UK 1982) p. 144.Google Scholar
15. Christel, L. A. and Gibbons, J. F., J. Appl. Phys. 52 1050 (1981).Google Scholar
16. Rao, E. V. K., Duhamel, N., Favennec, P. N. and L'Haridon, H., Ion Implantation in Semiconductors (Plenum, New York, 1976) p. 77.Google Scholar
17. Yoder, M. N., Semi-Insulating III-V Materials, ed. Rees, G. J. (Shiva, Cheshire, UK 1980) p. 281.Google Scholar
18. Sadana, D. K., Nucl. Instr. Meth. B7 375 (1985).CrossRefGoogle Scholar