Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:41:05.367Z Has data issue: false hasContentIssue false

Defect Reactions at Metal-Semiconductor and Semiconductor-Semiconductor Interfaces

Published online by Cambridge University Press:  25 February 2011

W. Walukiewicz*
Affiliation:
Center for Advanced Materials, Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
Get access

Abstract

A recently proposed, new approach to the problem of native defect formation in compound semiconductors is presented. The approach is based on the concept of amphoteric native defects. It is shown that the defect formation energy as well as structure and properties of simple native defects depend on the location of the Fermi level with respect to an internal energy reference: the Fermi level stabilization energy. The known location of the stabilization energy determines the electronic part of the defect formation energy and allows for a quantitative description of a variety of phenomena including: the formation of defects at metal-semiconductor interfaces, doping induced superlattice intermixing and limitations of free carrier concentrations in semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kroger, F.A. and Vink, H.J., in Solid State Physics, Vol. III, edited by Seitz, F. and Turnbull, D. (Academic, New York, 1956), p. 307.Google Scholar
[2] Mandel, G., Phys. Rev. 134, A1073 (1964).CrossRefGoogle Scholar
[3] Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y. and Lindau, I., J. Vac. Sci. Technol. 16, 1427 (1979).Google Scholar
[4] Deppe, D.G. and Holonyak, N. Jr, J. Appl. Phys. 64, R93 (1988).CrossRefGoogle Scholar
[5] Walukiewicz, W., J. Vac. Sci. Technol., B5, 1062 (1987).Google Scholar
[6] Walukiewicz, W., Phys. Rev. B37, 4760 (1988).CrossRefGoogle Scholar
[7] Lindau, I. and Kendelewicz, T., CRC Critical Rev. in Sol. State and Mat. Sci. 13, 27, 1986.Google Scholar
[8] Newman, N., Spicer, W.E., Kendelewicz, T. and Lindau, I., J. Vac. Sci. Technol. B4, 931 (1986).CrossRefGoogle Scholar
[9] Inkson, J.C., J. Phys. C6, 1350 (1973).Google Scholar
[10] Brillson, L.J., Brucker, C.F., Stoffel, N.G., Katnani, A.D. and Margaritondo, G., Phys. Rev. Lett. 46, 838 (1981).Google Scholar
[11] Freeouf, J.L. and Woodall, J.M., Appl. Phys. Lett. 39, 727 (1981).CrossRefGoogle Scholar
[12] Bardeen, J., Phys. Rev. 71, 717 (1947).Google Scholar
[13] Heine, V., Phys. Rev. A138, 1689 (1965).CrossRefGoogle Scholar
[14] Tejdor, C., Flores, F. and Louis, E., J. Phys. C10, 2163 (1977).Google Scholar
[15] Louie, S.G. and Cohen, M.L., Phys. Rev. B13, 2461 (1976).Google Scholar
[16] Tersoff, J., J. Vac. Sci. Technol. B3, 1157 (1985).Google Scholar
[17] Ludeke, R., Chiang, T.-C. and Miller, T., J. Vac. Sci. Technol. B1, 581 (1983).Google Scholar
[18] Brudnyi, V.N., Krivov, M.A., Potapov, A.I., and Shakhovostov, V.I., Fiz. Tekh. Poluprovodn. 16, 39 (1982) [Sov. Phys.-Semicond. 16, 21 (1982)].Google Scholar
[19] Brudnyi, V.N. and Novikov, V.A., Fiz. Tekh. Poluprovodn. 19, 747 (1985) [Sov. Phys.-Semicond. 19, 460 (1985)].Google Scholar
[20] Brudnyi, V.N. and Novikov, V.A., Fiz. Tekh. Poluprovodn. 16, 1880 (1982) [Sov. Phys.-Semicond. 16, 1211 (1983)].Google Scholar
[21] Ludeke, R., Straub, D., Himpsel, F.J., and Landgren, G., J. Vac. Sci. Technol. A 4, 874 (1986).CrossRefGoogle Scholar
[22] Chin, K.K., Cao, R., Kendelewicz, T., Miyano, K., Teh, J.-J., Lindau, I. and Spicer, W.E., Phys. Rev. B36, 5914 (1987).Google Scholar
[23] Kolin, N.G., Ozsenskii, V.B., Rytova, N.S. and Yurova, E.S., Fiz. Tekh. Poluprovodn. 21, 521 (1987) [Sov. Phys.-Semicond. 21, 326 (1987)].Google Scholar
[24] Mead, C.A., Solid-State Electron. 9, 1023 (1966).Google Scholar
[25] Akimchenko, I.P., Panshina, E.G., Tikhonova, O.V., and Frimor, E.A., Fiz. Tekh. Poluprovodn. 13, 2210 (1979) [Sov. Phys.-Semicond. 13, 1292 (1979)].Google Scholar
[26] Walukiewicz, W., J. Vac. Sci. Technol. B6, 1257 (1988).Google Scholar
[27] Harrison, W.A. and Tersoff, J., J. Vac. Sci. Technol. B4, 1068 (1986).Google Scholar
[28] Sankey, O.F., Allen, R.E., Ren, Sheng-Fen, and Dow, J., J. Vac. Sci. Technol. B3, 1162 (1985).Google Scholar
[29] Baraff, G.A. and Schluter, M.A., Phys. Rev. Lett. 55, 1327 (1985).Google Scholar
[30] Baraff, G.A. and Schluter, M.A., Phys. Rev. B33, 7346 (1986).CrossRefGoogle Scholar
[31] Sankey, O.F. and Jansen, R.W., J. Vac. Sci. Technol. B6, 1240 (1988).Google Scholar
[32] Zunger, A., Phys. Rev. B24, 4372 (1981).Google Scholar
[33] Zhang, S.B., Cohen, M.L., and Louie, S.G., Phys. Rev. B34, 768 (1986).Google Scholar
[34] Qian, Guo-Xin, Martin, R.M. and Chadi, D.J., J. Vac. Sci. Technol. B5, 933 (1987).Google Scholar
[35] There is a strong evidence that deposition of metal produces an As rich region in GaAs below the interface, see e.g. Liliental-Weber, Z., J. Vac. Sci. Technol. B5, 1007 (1987).Google Scholar
[36] Mei, P., Yoon, H.W., Venkatesan, T., Schwarz, S.A. and Harbison, J.P., Appl. Phys. Lett. 50, 1823 (1987).Google Scholar
[37] Kawabe, M., Shimizu, N., Hasegawa, F. and Nannichi, Y., Appl. Phys. Lett. 46, 849 (1985).Google Scholar
[38] Tan, T. Y. and Gösele, U., J. Appl. Phys. 61, 1841 (1987).Google Scholar
[39] Tan, T.Y. and Gbsele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
[40] Laidig, W.D., Holonyak, N. Jr, Camaras, M.D., Hess, K. and Coleman, J.J., Dapkus, P.D. and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).CrossRefGoogle Scholar
[41] Nolte, D.D., Walukiewicz, W. and Haller, E.E., Phys. Rev. Lett. 59, 501 (1987).Google Scholar
[42] Kobayashi, J., Fukanaga, T., Ishida, K. and Nakashima, H., Appl. Phys. Lett. 50, 519 (1987).Google Scholar
[43] Miyazawa, T., Kawamura, Y. and Mikami, O., Jpn. J. Appl. Phys. 27, L1731 (1988).Google Scholar
[44] Mei, P., Schwarz, S.A., Venkatesan, T., Schwartz, C.L. and Colas, E., in Advanced Surface Processes for Optoelectronics, edited by Bernasek, S.L., Venkatesan, T. and Temkin, H. (Materials Research Society, Pittsburgh, 1988) Vol. 126, p. 71.Google Scholar
[45] Vechten, J. Van, J. Appl. Phys. 53, 7082 (1982).CrossRefGoogle Scholar
[46] Vieland, L.J. and Kudman, J., J. Phys. Chem. Solids 24, 437 (1963).Google Scholar
[47] Sette, F., Pearton, S.J., Poate, J.M. and Rowe, J.E., Nucl. Instrum. Methods B 19/20, 408 (1987).Google Scholar
[48] Walukiewicz, W., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S.J. and Davis, G. (Materials Research Society, Pittsburgh, 1988) Vol. 104, p. 483.Google Scholar
[49] Yuba, Y., Gamo, K., Masuda, K. and Nambu, S., Jpn. J. Appl. Phys. 13, 641 (1974).Google Scholar
[50] Alley, M.I., Dzafarov, Z.A. and Alieva, M.A., Fiz. Tekh. Poluprovodn. 5, 337 (1971) [Sov. Phys.-Semicond. 5, 290 (1971)].Google Scholar
[51] Sunder, W.A., Barns, R.L., Kometani, T.Y., Parsey, J.M. Jr, and Laudise, R.A., J. Cryst. Growth 78, 9 (1986).Google Scholar
[52] Astles, M.G., Smith, F.G.H. and Williams, E.W., J. Electrochem. Soc. 120, 1750 (1973).Google Scholar
[53] Chevrier, J., Horache, E. and Goldstein, Z., J. Appl. Phys. 53, 3247 (1981).Google Scholar
[54] Sacks, R. and Shen, H., Appl. Phys. Lett. 47, 374 (1985); I. Ito and T. Ishibashi, Jpn. J. Appl. Phys. 27, L707 (1988).Google Scholar
[55] Meulen, Y.J. Van der, J. Phys. Chem. Solids 28, 25 (1967).CrossRefGoogle Scholar
[56] Walukiewicz, W., Phys. Rev. B39, 8776 (1989).Google Scholar
[57] Walukiewicz, W., Appl. Phys. Lett. 54, 2009 (1989).Google Scholar