Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-30T05:09:35.008Z Has data issue: false hasContentIssue false

THE DEFECT STRUCTURE OF ION-IMPLANTED AlxGa1−xAs/GaAs SUPERLATFICES

Published online by Cambridge University Press:  28 February 2011

B.C. DE COOMAN
Affiliation:
Department of Materials Science and Engineering, Bard Hall
C.B. CARTER
Affiliation:
Department of Materials Science and Engineering, Bard Hall
J. RALSTON
Affiliation:
School of Electrical Engineering, Phillips Hall Cornell University, Ithaca NY 14853
G.W. WICKS
Affiliation:
School of Electrical Engineering, Phillips Hall Cornell University, Ithaca NY 14853
L.F. EASTMAN
Affiliation:
School of Electrical Engineering, Phillips Hall Cornell University, Ithaca NY 14853
Get access

Abstract

Cross-sectional transmission electron microscopy (XTEM) has been used to study the defect structure and intermixing of ion-implanted and annealed AlxGa1−xAs/GaAs superlattices. The results show clearly that the layer intermixing depends on mass and energy of the implanted species and the annealing conditions. The temperature and duration of annealing determines mainly the amount of residual damage. In addition it was observed that in all cases the point-defects agglomeration was influenced by the strain field present at the layer interfaces; extended defects nucleate preferentially in the GaAs layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chang, L.L., L.Esaki Prog. Crystal Growth Charact.,2,p.3,(1979)Google Scholar
2.K.Ishida,J.Matsui,T.Kamejima,I.Sakuma phys. stat. sol.(a),31,p.255,(1975)CrossRefGoogle Scholar
3.J.J.Coleman,P.D.Dapkus,C.G.Kirkpatrick,M.D.CamrasN.Holonyak Jr. Appl. Phys. Lett.,40,no.10,p.904,(1982)CrossRefGoogle Scholar
4.P.Gavrilovic,D.G.Deppe,K.Meehan,N.Holonyak Jr.,J.J.ColemanR.D.Burnham Appl. Phys. Lett.,47,no.2,p.130,(1985)CrossRefGoogle Scholar
5.D.R.Myers,R.M.Biefeld,I.J.Fritz,S.T.Picraux,T.E.Zipperian Appl. Phys. Lett.,44,no. 1 l,p. 1052,(1984)Google Scholar
6.S.T.Picraux,G.W.Amold,D.R.Myers,L.R.Dawson,R.M.Biefeld,I.J.Fritz,T.E.Zipperian Nucl. Instr. and Meth. Phys. Res. B7/8,p.453 (1985)CrossRefGoogle Scholar
7.C.E.Bames,G.A.Samara,R.M.Biefeld,T.E.Biefeld,T.E.Zipperian,G.C.Osbourn Proc. 13th Intl.Conference on Defects in Semiconductors,Coronado CA,August 12-17, Eds.L.C.Kimerling and J.M.Parsey Jr.,p.471,(1984)Google Scholar
8.J.Ralston,G.W.Wicks,L.F.Eastman,B.C.De Cooman,C.B.Carter to be published in J. Appl. Phys.,(1985)Google Scholar
9.B.C.De Cooman,S.H.Chen,C.B.Carter,J.Ralston,G.W.Wicks Inst. Phys. Conf. Ser. 76,p.301(1985)Google Scholar
10.C.A.OlivieriM.BeharP.F.PFichtner,F.G.ZawislakD.Fink,J.P.Biersack J. App1. Phys.,58,no.2,p.659,(1985)Google Scholar
11.J.P.Biersack,L.G.Haggmark Nucl. Instr. and Meth. 174,p.453,(1980)Google Scholar
12.L.L.Chang,A.Koma Appl. Phys. Lett.,29,no.3,p.138,(1976)Google Scholar
13.K.Meehan,N.Holonyak,J.M.Brown,M.A.Nixon,P.Gavrilovic,R.D.Winham Appl. Phys. Lett.,45, no.5,p.549,(1984)Google Scholar
14.M.Ilegems,G.L.Pearson Phys. Rev B,1,no.4,p.1576,(1970)CrossRefGoogle Scholar
15.T.Y.Tan Phil. Mag. A,44,no. l,p. l01,(1981)Google Scholar