Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-18T12:56:44.305Z Has data issue: false hasContentIssue false

Defects in Large-Misfit Heteroepitaxy

Published online by Cambridge University Press:  28 February 2011

D.J. Eaglesham
Affiliation:
Department of Materials Science and Engineering, University of Liverpool, Liverpool L69 3BX, UK
M. Aindow
Affiliation:
Department of Materials Science and Engineering, University of Liverpool, Liverpool L69 3BX, UK
R.C. Pond
Affiliation:
Department of Materials Science and Engineering, University of Liverpool, Liverpool L69 3BX, UK
Get access

Abstract

A Transmission Electron Microscopy (TEM) study is presented of GaAs on Si (100) and CdTe on GaAs (100), and the implications for defect nucleation mechanisms are discussed. MOCVD GaAs/Si is shown to grow by island nucleation followed by 3D growth. Single islands are free of inversion domain boundaries (or “APBs”) implying that a single domain is able to grow over a demi-step on the substrate surface during this 3D growth. Misfit dislocations are shown to be edge type during island growth, with 60° type being generated at island junctions. The predominant threading dislocations are found to have inclined a/2 <110> Burgers vectors. The implied mechanisms for the generation of both misfit and threading dislocations are discussed. In MOCVD CdTe/GaAs the microstructure is shown to have a number of qualitatively similar features; in addition, study of this much larger misfit system allows us to deduce a possible explanation for misorientation effects in these systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fischer, R., Morkoq, H., Neumann, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M. and Erickson, L.P., J. Appl. Phys. 60, 1640 (1986).Google Scholar
2 Tafto, J. and Spence, J.C.H., J. Appl. Cryst. 15, 60 (1982).Google Scholar
3 Eaglesham, D.J., Devenish, R., Fan, R.T., Humphreys, C.J., Madras, S., Morkoc, H., Bradley, R.R. and Augustus, P.D., Inst. Phys. Conf. Ser. 87, 105 (1987).Google Scholar
4 Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fischer, R., Pengi, C.K. and MorkoN, H., Appl. Phys. Lett. 49, 277, (1986).Google Scholar
5 Tsai, H.L. and Lee, J.W., Appl. Phys. Lett. 51, 130, (1987).CrossRefGoogle Scholar
6 Abrahams, M.S., Weisberg, L.R., Buiocchi, C.J. and Blanc, J., J. Mat. Sci. 4, 223 (1969).Google Scholar
7 Ahearn, J.S. and Uppal, P., Mat. Res. Soc. Symp. Proc. 91, 167 (1987).Google Scholar
8 Koch, S.M., Rosner, S.J., Hull, R., Yoffe, G.W. and Harris, J.S., J. Cryst. Growth 81, 205 (1987). See also R. Hull and A. Fischer-Colbrie, Appl. Phys. Lett. 50, 851 (1987).CrossRefGoogle Scholar
9 Pukite, P.R. and Cohen, P.I., Mat. Res. Symp. Proc. 91, 51 (1987).Google Scholar
10 Kvam, E.P., Eaglesham, D.J., Maher, D.M., Humphreys, C.J., Bean, J.C., Green, G.S. and Tanner, B., Mat. Res. Soc. Symp. Proc. 104, in press.Google Scholar
11 Harris, J.S., Koch, M. and Rosner, S.J., Mat. Res. Soc. Symp. Proc. 91, 3 (1987).Google Scholar
12 Igarashi, O., Japan. J. Appl. Phys. 15, 1435 (1976).CrossRefGoogle Scholar
13 Pond, R.C., Aindow, M., Dineen, C. and Peters, T., Inst. Phys. Conf. Ser. 87, 181 (1987).Google Scholar
14 Pond, R.C., Mat. Res. Soc. Symp. Proc. 56, 3 (1986).Google Scholar
15 Yao, T., Okada, Y., Kawanami, H., Matsui, S., Imagawa, A. and Ishida, K., Mat. Res. Soc. Symp. Proc. 91, 63 (1987). See also J.W. Lee, J.P. Salermo, R.P. Gale and J.C.C. Fan, ibid. 33.Google Scholar
16 Feuillet, G., Cioccio, L. Di and Million, A., Inst. Phys. Conf. Ser. 87, 135 (1987).Google Scholar