Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T05:58:01.339Z Has data issue: false hasContentIssue false

Defects in Photo-Assisted CBE-Grown GaAs

Published online by Cambridge University Press:  22 February 2011

Peter J. Goodhew
Affiliation:
Department of Materials Science and Engineering, The University of Liverpool, P.O.Box 147, Liverpool L69, 3BX, England.
R. Beanland
Affiliation:
Department of Materials Science and Engineering, The University of Liverpool, P.O.Box 147, Liverpool L69, 3BX, England.
T. Farrell
Affiliation:
Department of Materials Science and Engineering, The University of Liverpool, P.O.Box 147, Liverpool L69, 3BX, England.
Get access

Abstract

Excimer laser light has been used to achieve the maximum growth rate of GaAs in a chemical beam epitaxy system when temperatures were more than a hundred degrees below the normalgrowth temperature. Secondary electron and transmitted electron microscopy of material grown using laser assistance shows the presence of surface ripples aligned with crystallographic directions. Layers grown at the lowest temperatures using a high fluence of excimer laser light contain a high density of small dislocation tangles (>1011 cm-−2 ). Lower fluences have no effect on the microstructure of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Joyce, T.B., Bullough, T.J., Kightley, P., Kiely, C. J., Xing, Y.R. and Goodhew, P.J., J. Crystal Growth 120, 206, (1992).Google Scholar
[2] Sigura, H., J. Cryst. Growth 120, 389, (1992).Google Scholar
[3] Sigura, H., Iga, R., Yamada, T. and Yamaguchi, M., Appl. Phys. Lett. 54, 335, (1989).Google Scholar
[4] Donnelly, V.M., Tu, C.W., Beggy, J.C., McCrary, V.R., Lamont, M.G., Harris, T.D., Baiocchi, F.A. and Farrow, R.C., Appl. Phys. Lett. 52, 1065, (1988).Google Scholar
[5] Tokumitsu, E., Yamada, T., Konagai, M. and Takahashi, K., J. Vac. Sci. Tech. A7, 706, (1989).Google Scholar
[6] Farrell, T., Armstrong, J.V., Bullough, J.J., Joyce, T.B., Kightley, P. and Goodhew, P.J., J. Cryst. Growth 120, 395, (1992).Google Scholar
[7] Osgood, R.M. Jr, Ann. Rev. Phys. Chem., 34, 77, (1983).Google Scholar
[8] Ayoyagi, Y., Masuda, S., Namba, S., Doi, A., Appl. Phys. Lett. 47, (1985), 95.Google Scholar
[9] Kumagai, H, Toyoda, K., Machida, H and Tanaka, S., Appl. Phys. Letts. 59, 2974, (1991).Google Scholar
[10] Cullis, A.G., Rep. Prog. Physics 48, 1157, (1985).Google Scholar
[11] Brueck, S.R.J., Ehrlich, D.J., Phys. Rev. Lett. 48, 1678, (1982).Google Scholar
[12] Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118, (1974).Google Scholar
[13] Maeda, K. and Yamashita, Y., Inst. Phys. Conf. Ser. No. 104, (“Structure and Properties of Dislocations in Semiconductors 1989”, ed. by Roberts, S.G., Holt, D.B. and Wilshaw, P.R., IOP press, Bristol), pg. 269, (1989).Google Scholar
14] Hussein, S.A., Fahmy, A.A., El-Masry, N.A, Bedair, S.M., J. Appl. Phys. 67, 3853, (1990).Google Scholar