Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-21T00:07:05.428Z Has data issue: false hasContentIssue false

Determination of Diffusivities of Si Self-Diffusion and Si Self-Interstitials using Isotopically Enriched Single-or Multi-30Si Epitaxial Layers

Published online by Cambridge University Press:  01 February 2011

S. Matsumoto
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522, Japan
S.R. Aid
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522, Japan
T. Sakaguchi
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522, Japan
K. Toyonaga
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522, Japan
Y. Nakabayashi
Affiliation:
Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522, Japan
M. Sakuraba
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
Y. Shimamune
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
Y. Hashiba
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
J. Murota
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
K. Wada
Affiliation:
Department of Materials Science, University of Tokyo, Tokyo 113-8656, Japan
T. Abe
Affiliation:
Shin-Etsu Handoutai, Isobe, Gunma 379-01, Japan
Get access

Abstract

Self-diffusivity of Si has been obtained over a wide temperature range (867°C-1300°C) using highly isotopically enriched 30Si epi-layers (99.88%) as a diffusion source into natural Si substrates. 30Si epi-layers were grown on both CZ-Si substrates and non-doped epi-layers grown on CZ-Si substrates using low pressure CVD with 30SiH4. Diffusion was performed in resistance-heated furnaces under a pure Ar atmosphere. After annealing, the concentrations of the respective Si isotopes were measured with secondary ion mass spectroscopy (SIMS). Diffusivity of 30Si (called Si self-diffusivity, DSD) was determined using a numerical fitting process with 30Si SIMS profiles. We found no major differences in self-diffusivity between bulk Si and epi-Si. Within the 867°C -1300°C range investigated, DSD can be described by an Arrhenius equation with one single activation enthalpy: DSD =14 exp (—4.37 eV/kT) cm2/s. The present result is in good agreement with that of Bracht et. al.

Diffusivity and thermal equilibrium concentration of Si self-interstitials have been determined using multi-30Si epi-layers consisting of alternative layers with isotopically pure 30Si and natural Si. The sample surface was oxidized and the Si self-interstitials were introduced from the surface. Spreading of 30Si spikes of each layer due to the diffusion of Si self-interstitials generated at the surface was measured with SIMS analysis. The diffusivity of Si self-interstitials, DI, is obtained by fitting with experimental results. In the temperature range between 820 -920°C, DI and thermal equilibrium concentration of Si self-interstitials, CIi, are described by the Arrhenius equations DI3.48×104 exp (—3.82eV/KT) cm2/s and CIi= 9.62×1018 exp (—0.475eV/KT) cm-3, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Peart, R.F., Phys. Status Solidi 15, K119 (1966).Google Scholar
2 and, B.J. Masters Fairfield, J.M., Appl. Phys. Lett. 8, 280 (1966).Google Scholar
3 Fairfield, J.M. and Masters, B.J., J. Appl. Phys. 38, 3148 (1967).Google Scholar
4 Mayer, H.J., Mehrer, H. and Maier, K., Inst. Phys. Conf. Ser 31, 186 (1977).Google Scholar
5 Kalinowski, L. and Seguin, R., Appl. Phys. Lett. 35, (1979) 211 Google Scholar
6 Hirvonen, J. and Anttila, A., Appl. Phys. Lett. 35, 703(1979).Google Scholar
7 Demond, F.J., Kalbitzer, S., Mannsperger, H. and Damjantschitsch, H., Phys. Lett. 93A, 503 (1983).Google Scholar
8 Tan, T.Y. and Gossele, U., Appl. Phys. A37, 1(1985).Google Scholar
9 Fahey, P.M., Grifin, P.B. and Plummer, J.D., Rev. Mod. Phys. 61, 289(1989).Google Scholar
10 Bracht, H., Haller, E.E. and Clark-Phelps, R., Phys. Rev. Lett. 81, 393(1998).Google Scholar
11 Ural, A., Griffin, P.B. and Plummer, J.D., Phys. Rev. Lett. 73, 1706(1999).Google Scholar
12 Nakabayashi, Y., Osman, H.I., Toyonaga, K., Yokota, K., Matsumoto, S., Murota, J., Wada, K. and Abe, T., Jpn. J. Appl. Phys. 42, 3304(2003).Google Scholar
13 Gossmann, H.-J. et al., J. Appl. Phys. 77, 1948(1995).Google Scholar
14 Levinshtein, M.E. and Rumyantsev, S.L.: Handbook Series on Semiconductor parameters (World Scientific, Singapore, 1996) Vol. 1, Chap. 1, p.1 Google Scholar
15 Compaan, K. and Haven, Y., Trans. Faraday Soc. 54, 1498 (1958)Google Scholar
16 Compaan, K. and Haven, Y., Trans. Faraday Soc. 52, 786 (1956)Google Scholar
17 Pandey, K.C., Phys. Rev. Lett. 57, 2287 (1986)Google Scholar
18 Pandey, K.C. and Kaxiras, E., Phys. Rev. Lett. 66, 915 (1990)Google Scholar
19 Blochl, P.E., Smargiassi, E., Car, R., Laks, D.B., Andreoni, W., and Pantelides, S.T., Phys. Rev. Lett. 70, 2435 (1993)Google Scholar
20 Car, R., Kelly, P. J., Oshiyama, A., and Pantelides, S., Phys. Rev. Lett. 54, 360 (1985)Google Scholar
21 Kelly, P. J. and Car, R., Phys. Rev. B 45, 6543 (1992)Google Scholar
22 Mercer, J. L. and Chou, M. Y., Phys. Rev. B 47, 9366 (1993)Google Scholar
23 Batra, I. P., Abraham, F. F., and Ciraci, S., Phys. Rev. B 35, 9552 (1987)Google Scholar
24 Maroudas, D. and Brown, R. A., Appl. Phys. Lett. 62, 172 (1993)Google Scholar
25 Baskes, M. I., Nelson, J. S., and Wright, A. F., Phys. Rev. B 40, 6085(1989)Google Scholar
26 Frank, W., Gosele, U., Mehrer, H., and Seeger, A., in: Diffusion in Crystalline Solids, Eds. Murch, G. E. and Nowick, A. S. (Academic, New York, 1984) p. 63 Google Scholar
27 Bracht, H., Stolwijk, N. A., and Mehrer, H., Phys. Rev. B 52, 16542 (1995)Google Scholar
28 Tang, M., Colombo, L., Zhu, J., and Rubia, T. Diaz de la, Phys. Rev. B 55, 14279 (1997)Google Scholar
29 Taniguchi, K. and Antoniadis, D. A., “Defects in Silicon”, p315, The Electrochemical Society (1983).Google Scholar
30 Stolwijk, N. A., Schuster, B., and Holzl, J., Appl. Phys. A33, 133 (1984).Google Scholar
31 Gosele, U., Frank, W., and Seeger, A., Appl. Phys. 23, 361(1980).Google Scholar
32 Morooka, M., and Kajiwara, T., Jpn. J. Appl. Phys. 42, 3311(2003).Google Scholar
33 Rasband, P. B. and Clancy, P., and Thompson, M. O., J. Appl. Phys. 79, 8998 (1996).Google Scholar
34 Johnson, M.D., Caturla, M. –J, and Rubia, T. Dias de la, J. Appl. Phys. 84, 1963(1998).Google Scholar
35 Cowern, N. E. B., Jansen, K. T. F., and Los, H. F. E., J. Appl. Phys. 68, 6191(1990).Google Scholar
36 Mattoni, A., Bernardini, F., and Colombo, L., Phys. Rev. B 66, 195214 (2002).Google Scholar
37 Morehead, F. F., Appl. Phys. Lett. 8, 280 (1966).Google Scholar
38 Bronner, G. B. and Plummer, J. D., J. Appl. Phys. 61, 5286 (1987).Google Scholar
39 Wada, K. and Inoue, N., J. Appl. Phys. 58, 1183 (1985).Google Scholar
40 Taniguchi, K., Antoniadis, D. A., and Matsushita, Y., Appl. Phys. Lett. 42, 961(1983).Google Scholar