Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T10:36:07.873Z Has data issue: false hasContentIssue false

Diffusion Mechanism of Cations and Anions in Cation-Exchange Process for Fabrication of High-Tc Superconducting HgBa2CaCu2O6+δ?Films

Published online by Cambridge University Press:  18 March 2011

Y. Y. Xie
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 USA
J. Z. Wu
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 USA
T. Aytug
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
D. K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Get access

Abstract

We have investigated the diffusion mechanism of Hg and Tl cations in cation-exchange process that has been used successfully for fabrication of Hg-based high-Tc superconducting films. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) was employed to map the distribution of Tl and Hg cations in films quenched at different stages of the cation exchange process. SEM/EDS mappings showed that the nonuniform distribution of Hg is visible in micrometer size on the surface of samples quenched after short-time (∼10min) Hg-annealing, but this nonuniformity disappears for longer-time (∼45 min) Hg-annealing samples. This change could be ascribed to different stages in Hg diffusion -- the former is the early stage when Hg is concentrated in the channels and the latter Hg-cations have already diffuse to grains. Our experimental results hence suggest that Hg-cations channel through defects in the films then diffuse into grains along a-b planes and vise versa for Tl-cations. The diffusion mechanism of anions (oxygen) in post annealing has also been discussed. Fluorine-doped Hg-1212 films were post annealed in flowing oxygen at 300 °C for several hours. Magnetic measurement has shown these samples are comprised pure overdoped Hg-1212 phase with smooth and sharp transition below 120 K, but resistivity vs. temperature measurement shows a kink at ∼123 K. This implies that the optimally doped Hg-1212 phase with higher Tc might be surrounded by overdoped Hg-1212 phase and their contribution to magnetization is minimized, thus the possible diffusion mechanism for anions is also through grain boundaries at a much larger time scale compared to the cations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Putilin, S. N., Antipov, E. V., Chmaissem, O., and Marezio, M., Nature 362, 226 (1993).Google Scholar
[2] Schilling, A., Cantoni, M., Guo, J. D., and Ott, H. R., Nature 363, 56 (1993).Google Scholar
[3] Krusin-Elbaum, L., Tsuei, C. C., and Gupta, A., Nature 373, 679 (1995).Google Scholar
[4] Wu, J.Z., Yan, S.L., Xie, Y.Y., App. Phys. Lett. 74, 1469 (1999).Google Scholar
[5] Xie, Y.Y., Wu, J.Z., Gapud, A.A., Yang, Y., Xin, Y., Physics C 322, 19 (1999).Google Scholar
[6] Yan, S. L., Xie, Y.Y., Wu, J. Z., Aytug, T., Gapud, A.A., Kang, B.W., Fang, L., He, M., Tidrow, S.C., Kirchner, K.W., Liu, J.R. and Chu, W.K., App. Phys. Lett. 73, 2989 (1998).Google Scholar
[7] Aga, R. Jr, Yan, S.L., Xie, Y.Y., Han, S., Wu, J.Z., Jia, Q.X., Kwon, C., App. Phys. Lett. 76, 1606 (2000).Google Scholar
[8] Aga, R. Jr., Xie, Y.Y., Yan, S.L., Wu, J.Z., Han, S., App. Phys. Lett. 79, 2417 (2001).Google Scholar
[9] Xie, Y.Y., Aytug, T., Wu, J.Z., Verebelyi, D.T., Paranthaman, M., Goyal, A., and Christen, D.K., App. Phys. Lett. 77, 4193 (2000).Google Scholar
[10] Xie, Y.Y., Wu, J.Z., Albert, A.H., unpublished.Google Scholar
[11] Lee, W.Y., Lee, V.Y., Salem, J., Huang, T.C., Savoy, R., Bullock, D.C., and Parkin, S.S.P., Appl. Phys. Lett. 53, 329 (1988).Google Scholar
[12] Siegal, M. P., Venturini, E. L., and Aselage, T. L., J. Mater. Res. 12, 2825 (1997).Google Scholar
[13] Wang, X.-G., Huang, Z., Yuan, L., Physica C, 253, 254 (1995).Google Scholar
[14] Xie, Y.Y., Wu, J.Z., “Critical current density enhancement in fluorine-assisted overdoped HgBa2CaCu2O6+δ?thin films”, preprint.Google Scholar