Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-14T08:35:58.056Z Has data issue: false hasContentIssue false

Diffusion of Hydrogen and Hydrogen-Dopant Interactions in Si Doped GaAs and GaAlAS Alloys

Published online by Cambridge University Press:  03 September 2012

J. Chevallier
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place A. Briand, 92195 - MEUDON, France.
B. Machayekhi
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place A. Briand, 92195 - MEUDON, France.
C. Grattepain
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place A. Briand, 92195 - MEUDON, France.
R. Rahbi
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place A. Briand, 92195 - MEUDON, France.
B. Theys
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place A. Briand, 92195 - MEUDON, France.
Get access

Abstract

Deactivation of silicon dopants by hydrogen in GaAs and GaAlAs proceeds through the formation of hydrogen-dopant complexes with thermodynamical and vibrational characteristics weakly sensitive to the alloy composition. However the hydrogen diffusion profile is strongly sensitive to the alloy composition. In GaAs:Si, the profile is an erfc function while in Ga1-xAlxAs:Si with x > xo, it is rather a step like function. From the doping level dependence of xo, we explain the hydrogen diffusion properties within a model where H° and H- govern the diffusion profiles respectively for x < xo and x > xo. We deduce that hydrogen behaves as a deep acceptor in these materials with a level slightly resonant in the conduction band of GaAs and localized in the band gap of Ga1-xAlxAs alloys for x > 0.07.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chevallier, J., Dautremont-Smith, W. C., Tu, C. W. and Pearton, S. J., App. Phys. Lett., 47, 108 (1985).Google Scholar
[2] Pajot, B., Newman, R. C., Murray, R., Jalil, A., Chevallier, J. and Azoulay, R., Phys. Rev., B 37, 4188 (1988).Google Scholar
[3] Yuan, M. H., Wang, L. P., Jin, S. X., Chen, J. J. and Qin, G. G., Appl. Phys. Lett., 58, 925 (1991).Google Scholar
[4] Leitch, A. W. R., Prescha, Th. and Weber, J., Phys. Rev., B 44, 1375 (1991).Google Scholar
[5] Roos, G., Johnson, N. M., Herring, C. and Harris, J. S., Appl. Phys. Lett., 59, 461 (1991);Google Scholar
in Defects in Semiconductors 16, edited by Davies, G., De Leo, G. G. and Stavola, M. (Trans Tech. Publications, 1992) Mat. Science Forum vol. 83–87 p. 605.Google Scholar
[6] Chevallier, J. and Pajot, B. in Defects in Semiconductors 16, edited by Davies, G., Deleo, G. G. and Stavola, M. (Trans Tech. Publications, 1992) Mat. Science Forum vol. 83–87 p. 539.Google Scholar
[7] Chevallier, J., Machayekhi, B., Grattepain, C. M., Rahbi, R. and Theys, B.: to be published.Google Scholar
[8] Rahbi, R., Mathiot, D., Chevallier, J., Grattepain, C. and Razeghi, M., Physica B 170, 135 (1991).CrossRefGoogle Scholar
[9] Rizk, R., De Mierry, P., Ballutaud, D., Aucouturier, M. and Mathiot, D., Physica B 170, 129 (1991).Google Scholar
[10] Johnson, N. M., Burnham, R. D., Street, R. A. and Thornton, R. L., Phys. Rev. B 33, 1102 (1986).Google Scholar
[11] Pajot, B., Inst. Phys. Conf. Ser. 95, 437 (1989).Google Scholar
[12] Adachi, S., J. Appl. Phys., 58, R1 (1985).Google Scholar