Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-10T16:04:08.934Z Has data issue: false hasContentIssue false

A Direct Method of Studying Polymer Adsorption on to Mica Surfaces Using a Commercial Mettler Ultramicrobalance

Published online by Cambridge University Press:  10 February 2011

H. Terashima*
Affiliation:
Institute of Applied Physics, University of Tsukuba, Ibaraki 305-8573, JAPAN
Get access

Abstract

A simple and direct method has been developed of determining absolute values of adsorbance, i.e. mass per unit area, of polymers adsorbed from solution on to mica surfaces. A commercially available Mettler UMT2 ultramicrobalance is used to measure the weight of mica sheets before and after the immersion of the mica sheets into polymer solution for a given period of time. The increase in weight of mica sheets is divided by the total area of mica surfaces to derive the adsorbance. Practically measurable change in adsorbance was evaluated to be 0.1 mg m2. As an example of the practical application of the present method, an experimental result is presented of the adsorption kinetics of polystyrene (M=66,000) adsorbed from cyclohexane on to mica surfaces at the 0 -temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Israelachvili, J. N., Intermolecular and Surface Forces, 2 nd ed. (Academic Press, London, 1992)p. 167.Google Scholar
2. Klein, J., Nature 288, 248 (1980).Google Scholar
3. Klein, J., J. Chem. Soc., Faraday Soc. I 79, 99 (1983).Google Scholar
4. Israelachvili, J. N., McGuiggan, P. M., and Homola, A. M., Science 240, 189 (1988).Google Scholar
5. Alsten, J. V. and Granick, S., Phys. Rev. Letters 61 (22), 2570 (1988).Google Scholar
6. Klein, J., Perahia, D., and Warburg, S., Nature 352, 143 (1991).Google Scholar
7. Fitzpatrick, H., Luckham, P. F., Erikson, S., and Hammond, K., J. Colloid Interface Sci. 149, 1 (1992).Google Scholar
8. Fleer, G. J., Stuart, M. A. Cohen, Scheutjens, J. M. H. M., Cosgrove, T., and Vincent, B., Polymers at Interfaces, (Chapman & Hall, London, 1993), p. 43.Google Scholar
9. Stromberg, R. R., Tutas, D. T., and Passaglia, E., J. Phys. Chem. 69, 3955 (1965).Google Scholar
10. Takahashi, A., Kawaguchi, M., Hirota, H., Kato, T., Macromolecules 13, 884 (1980).Google Scholar
11. Kuzmenka, D. J. and Granick, S., Colloid Surf. 31, 105 (1988).Google Scholar
12. Terashima, H., Klein, J., and Luckham, P. F., in Adsorption from Solution, edited by Ottewil, R. H., Rochester, C. H., and Smith, A. L. (Academic Press, London, 1983), p.p. 299311.Google Scholar
13. Terashima, H., J. Colloid Interface Sci. 125, 444 (1988).Google Scholar
14. Terashima, H., Kanehashi, K., and Imai, N., in Mat. Res. Soc. Sym. Proc. 248, 419 (1992).Google Scholar
15. Scheutjens, J. M. H. M. and Fleer, G. J., J. Phys. Chem. 83, 1619 (1979).Google Scholar
16. Neher, H. V., in Procedures in Experimental Physics, edited by Strong, J. (Prentice-Hall, New York, 1942), p.p. 188216.Google Scholar
17. Terashima, H., J. Colloid Interface Sci. 117, 523 (1987).Google Scholar