Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-16T16:41:18.807Z Has data issue: false hasContentIssue false

Discussion about non-Arrhenius behavior of high Li-ion conductor, (La,Li)TiO3

Published online by Cambridge University Press:  11 February 2011

Tetsuhiro Katsumata
Affiliation:
Department of Chemistry, Faculty of Science, Gakushuin University, 1–5–1 Mejiro, Toshimaku, 171–8588, Japan
Yoshiyuki Inaguma
Affiliation:
Department of Chemistry, Faculty of Science, Gakushuin University, 1–5–1 Mejiro, Toshimaku, 171–8588, Japan
Satoshi Baba
Affiliation:
Department of Physics, Faculty of Science, Gakushuin University, 1–5–1 Mejiro, Toshimaku, 171–8588, Japan
Ko-ichi Hiraki
Affiliation:
Department of Physics, Faculty of Science, Gakushuin University, 1–5–1 Mejiro, Toshimaku, 171–8588, Japan
Toshihiro Takahashi
Affiliation:
Department of Physics, Faculty of Science, Gakushuin University, 1–5–1 Mejiro, Toshimaku, 171–8588, Japan
Get access

Abstract

We investigated the dielectric properties of La0.53Na0.41-xLixTiO3 (x<0.26) and 7Li NMR for La0.53Na0.34Li0.17TiO3 (x=0.17). As results, relaxation process were observed at 40 K and 225 K for La0.53Na0.34Li0.17TiO3 (x=0.17). The activation energy of the dielectric relaxation at 40 K is in accordance with the that obtained by NMR measurement. On the other hand, the activation energy of the relaxation at 225 K accords with that of the Li ion conduction in the low temperature region for (La,Li)TiO3. These results indicate that different transport mechanisms intrinsically exist in (La,Li)TiO3 and one of reasons for the non-Arrhenius behavior of (La,Li)TiO3 is that the transport mechanism mainly related to the dc conductivity varies with the temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Belous, A. G., Novitiskaya, G. N., Polyanetskaya, S. V., Gornikov, I., Izv. Akad. Nauk. SSSR, Neorg. Mater. 23, 470 (1987).Google Scholar
2 Inaguma, Y., Chen, L., Itoh, M., Nakamura, T., Uchida, T., Ikuta, M., Wakihara, M., Solid State Commun. 86, 689 (1993).Google Scholar
3 Léon, C., Lucía, M. L., Santamaría, J., París, M. A., Sanz, J., and Várez, A., Phys. Rev. B 54, 184 (1996)Google Scholar
4 Emery, J., Buzare, J. Y., Bohnke, O., Fourquet, J. L., Solid State Ionics 99, 41 (1997).Google Scholar
5 París, M. A., Sanz, J., Léon, C., Santamaría, J., Ibarra, J. and Várez, A., Chem. Mater. 12, 1964 (2000).Google Scholar
6 Inaguma, Y., Itoh, M., Solid State Ionics, 86–88, 257 (1996).Google Scholar
7 Slichter, C. P.Principles of Magnetic Resonance” (Springer 3rd Ed).Google Scholar
8 Katsumata, T., Inaguma, Y., Solid State Ionics, In print.Google Scholar
9 Barrett, J. H., Phys Rev. 86, 118 (1952)Google Scholar
10 Abragam, A.Principles of Nuclear Magnetism” (Oxford Science Publications).Google Scholar
11 Léon, C., Rivera, A., Várez, A., Sanz, J., Santamaría, J., and Ngai, K. L., Phys. Rev. letter 86, 1279 (2001).Google Scholar
12 Inaguma, Y., Chen, L., Itoh, M., Nakamura, T., Solid State Ionics 70/71, 196 (1994).Google Scholar