Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-10T08:02:53.747Z Has data issue: false hasContentIssue false

Dislocation Density Reduction in GaAs Epilayers on Si Using Strained Layer Superlattices

Published online by Cambridge University Press:  28 February 2011

S. Sharan
Affiliation:
Dept of Materials Science and Engineering, North Carolina State University, Raleigh, N. C. 27695 - 7916
J. Narayan
Affiliation:
Dept of Materials Science and Engineering, North Carolina State University, Raleigh, N. C. 27695 - 7916
J. C. C. Fan
Affiliation:
Kopin Corporation Taunton, MA 02780
Get access

Abstract

Defects such as dislocations and interfaces play a crucial role in the performance of heterostracture devices. The full potential of GaAs on Si heterostructures can only be realized by controlling the defect density. The reduction of threading dislocations by the use of strained layer superlattices has been studied in these heterostructures. Several superlattice structures have been used to reduce the density of threading dislocations in the GaAs epilayer. The use of strained layer superlattices in conjunction with rapid thermal annealing was most effective in reducing threading dislocation density. Transmission electron microscopy has been used to study the dislocation density reduction and the interaction of threading dislocations with the strained layers. A model has been developed based on energy considerations to determine the critical thickness required for the bending of threading dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Narayan, J., Larson, B. C. and Christie, W. H., Laser - Solid Interactions and Laser Processing, Eds. Ferris, S. D., Leamy, H. J. and Poate, J. M., MRS Boston, p. 440 (1978).Google Scholar
2Narayan, J. and Sharan, S., to be published.Google Scholar
3Lee, J. W., Salerno, J. P., Gale, R. P. and Fan, J. C. C., Mater. Res. Soc. Proc., 91, 33 (1987).Google Scholar
4Bedair, S. M., Humprehys, T. P., El-Masry, N. A., Lo, Y., Hamaguchi, N., Lang, C. D., Tuttle, A. A., Dreifus, B. L. and Russell, P., Appl. Phys. Lett., 49, 942 (1986).Google Scholar
5Fischer, R., Maselink, W. T., Klem, J., Henderson, T., McGlim, T. C., Klein, M. V., Morkoc, H., Mazur, J. H. and Washbum, J., J. Appl. Phys., 58, 374 (1985).Google Scholar
6Fischer, R., Morkoc, H., Neumann, D. A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M. and Erickson, L. P., J. Appl. Phys., 60, 1640 (1986).Google Scholar
7El-Masry, N. A., Tarn, J. C. and Karam, N. H., J. Appl. Phys., 64, 3672 (1988).Google Scholar
8Yamaguchi, M., Nishioka, T. and Sugo, M., Appl. Phys. Lett., 54, 24(1989).Google Scholar
9Ohmachi, Y., Kadota, Y., Watanbe, Y. and Okamoto, H., Mater. Res. Soc. Proc., (1988).Google Scholar
10Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth, 27, 118 (1974); 29, 273 (1975); 32, 265 (1976).Google Scholar
11Hirth, J. P., Afr, S.. J. Phys., 9, 72 (1986).Google Scholar
12Sharan, S. and Narayan, J., J. Appl. Phys., 66, 2376 (1989).Google Scholar
13Chang, K. H., Bhattacharya, P. K. and Gibala, R., J. Appl. Phys., 66, 2993 (1989).Google Scholar