Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T16:02:00.228Z Has data issue: false hasContentIssue false

Analyzing the Mesoscopic Structure of Pericellular Coats on Living Cells

Published online by Cambridge University Press:  01 February 2011

Heike Boehm
Affiliation:
heike.boehm@mf.mpg.deMax Planck Institute for Metals ResearchNew Mateials and Biosystems, Stuttgart, Germany
Tabea A Mundinger
Affiliation:
tabea.mundinger@mf.mpg.deMax Planck Institute for Metals ResearchNew Mateials and Biosystems, Stuttgart, Germany
Valentin Hagel
Affiliation:
valentin.hagel@mf.mpg.deMax Planck Institute for Metals ResearchNew Mateials and Biosystems, Stuttgart, Germany
Christian H. J. Boehm
Affiliation:
christian.boehm@mf.mpg.deMax Planck Institute for Metals ResearchNew Mateials and Biosystems, Stuttgart, Germany
Jennifer E Curtis
Affiliation:
jennifer.curtis@physics.gatech.eduGeorgia Institute of TechnologySchool of Physics, Atlanta, Georgia, United States
Joachim P Spatz
Affiliation:
Joachim.Spatz@mf.mpg.deMax Planck Institute for Metals ResearchNew Mateials and Biosystems, Stuttgart, Germany
Get access

Abstract

We employed passive particle-tracking microrheology to map the micromechanical structure of the hyaluronan-rich pericellular coat enveloping chondrocytes. Therefor we exploited the technique's position sensitivity to gain radial information on the coat. We observed a linear increase in viscoelasticity from the coat's rim towards the cell membrane. This gradient corresponds to hyaluronan concentration profiles observed in confocal fluorescent microscopy with small, specific hyaluronan markers. These results suggest that the structural basis of the pericellular coat is formed by grafted hyaluronan of different effective lengths stretched out by a homogenous decoration with hyaladherins such as aggrecan. The different effective lengths could be caused either by different lengths of the HA chains or by “side-on” attachments within the chain. Remarkably, the hyaluronan-rich coat increases the viscosity of the pericellular space only by about a factor of about two at 100 and at 20 Hz compared to pure media and an increasing elastic component is observed. Both the viscoelasticity as well as the hyaluronan concentration decrease linearly or slightly exponential from the cell membrane towards the PCC's rim. These observations could be obtained on living cells exploiting this unintrusive measurement techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Evanko, S P, Tammi, M, Tammi, R H, Wight, T N, Adv Drug Deliv Rev 59, 13511365 (2007).Google Scholar
2 Toole, B P, Nat Rev Cancer 4 (7), 528539 (2004).Google Scholar
3 Tammi, M, Day, A J, Turley, E A, J B Biol Chem 277 (7), 45814584 (2002).Google Scholar
4 Itano, N et al. , J Biol Chem 274 (35), 2508525092 (1999).Google Scholar
5 Day, A J, Prestwich, G D, J Biol Chem 277 (7), 45854588 (2002).Google Scholar
6 Knudson, C B, J Biol Chem 120 (3), 825834 (1993).Google Scholar
7 Hellmann, M Hellmann, Weiss, M, Heermann, D W Heermann, Phys Rev hys E 76, 021802 (2007).Google Scholar
8 Cohen, M, Joester, D, Sabanay, I, Addadi, L, Geiger, B, Soft Matter 3, 327332 (2007).Google Scholar
9 Toole, B P, Sem Cell Dev Bio 12 (2), 7987 (2001).Google Scholar
10 Freeman, P M, Natarajan, R N, Kimura, J H, Andriacchi, T P, J Orthop Res, 12 (3), 311320 (1994).Google Scholar
11 Knight, M, Ghori, S, Lee, D, Bader, D L Bader, Med Eng Phys, 20, 684688 (1998).Google Scholar
12 Trickey, W R, Baaijens, F P T, Laursen, T A, Alexopoulos, L G, Guilak, F Guilak, J Biomech 39 (1), 7887 (2006).Google Scholar
13 Alexopoulos, L G, Williams, G M, Upton, M L, Setton, L A, Guilak, F Guilak, J Biomech 38 (3), 509517 (2005).Google Scholar
14 Bader, D L, Ohashi, T, Knight, M, Lee, D A, Sato, M, Biorheology 39 (1-2), 6978 (2002).Google Scholar
15 Ng, L, Hung, H-H, Sprunt, A, Chubinskaya, S, Ortiz, C, Grodzinsky, A J Biomech 40 (5), 10111023 (2007).Google Scholar
16 Sokolov, I, Iyer, S, Subba-Rao, V, Gaikwad, R M, Woodworth, C D, Appl Phys Lett, 91, 023902 (2007).Google Scholar
17 , Boehm, Mundinger, T A, Boehm, C H J, Hagel, V, Rauch, U, Spatz, J P, Curtis, J E, Soft Matter 5 (21), 43314337 (2009).Google Scholar
18 Cohen, M, Kam, Z, Addadi, L, Geiger, B, EMBO J 25 (2), 302311 (2006).Google Scholar
19 Cohen, M, Klein, E, Geiger, B, Addadi, L, Biophys J 85 (3), 19962005 (2003).Google Scholar
20 Gardel, M., Valentine, M. and Weitz, D., Microscale Diagnostic Techniques, Springer, Heidelberg, 2005, Microrheology chapter.Google Scholar
21 Waigh, T A, Rep Prog Phys 68, 685742 (2005).Google Scholar
22 Zhang, H, Baader, S L, Sixt, M, Kappler, J, U g, Rauch, J Histochem Cytochem 52 (7), 915922 (2004).Google Scholar
23 Boehm, H, PhD Thesis Thesis, University Heidelberg, (2008)Google Scholar
24 Weigel, und DeAngelis, J Biol Chem 282 (51)3677736781 (2007).Google Scholar
25 DeAngelis, , CMLS 56 (7), 670682 (1999).Google Scholar
26 Kultti, A, Rilla, K Rill, Tiihonen, R, Spicer, A P, Tammi, R H, Tammi, M, J Biol Chem 281 (23), 1582115828 (2006).Google Scholar
27 Richter, R, Hock, K, Burkhartsmeyer, J, Boehm, H, Bingen, P, Wang, G, Steinmetz, N F, Evans, D J, Spatz, J P, J Am Chem Soc 129, 53065307 (2007).Google Scholar