Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T13:16:37.326Z Has data issue: false hasContentIssue false

Doping of GaAs From Silane Decomposition Under Pulsed Laser Irradiation

Published online by Cambridge University Press:  21 February 2011

D. Pribat
Affiliation:
Thomson-CSF/LCR, Domaine de Corbeville, B.P. 10, 91401 Orsay Cedex, France
D. Dieumegard
Affiliation:
Thomson-CSF/LCR, Domaine de Corbeville, B.P. 10, 91401 Orsay Cedex, France
B. Dessertenne
Affiliation:
Thomson-CSF/LCR, Domaine de Corbeville, B.P. 10, 91401 Orsay Cedex, France
J. Chaplart
Affiliation:
Thomson-CSF/LCR, Domaine de Corbeville, B.P. 10, 91401 Orsay Cedex, France
Get access

Abstract

We have studied silicon incorporation in GaAs subsequent to Nd-YAG laser irradiation through high pressure silane atmospheres. The process involves SiH4 pyrolysis at contact with a laser-melted GaAs surface, and incorporation of the released Si atoms in the melt. SIMS analyses have allowed us to study silicon incorporation as a function of SiH4 pressure, laser energy density and number of laser shots. The high sheet resistance of the doped layers indicates that the silicon atoms are poorly electrically activated. A compensation mechanism is discussed based on oxygen penetration from native GaAs oxide layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deutsch, T. F., Fan, J. C. C., Turner, G. W., Chapman, R. L., Ehrlich, D. J., and Osgood, R. M. Jr., Appl. Phys. Lett. 38 (3), 144 (1981).Google Scholar
2. Deutsch, T. F., Ehrlich, D. J., Rathman, D. D., Silversmith, D. J., and Osgood, R. M. Jr., Appl. Phys. Lett. 39 (10), 825 (1981).CrossRefGoogle Scholar
3. Turner, G. B., Tarrant, D., Pollock, G., Pressley, R., and Press, R., Appl. Phys. Lett. 39 (12), 967 (1981).CrossRefGoogle Scholar
4. Deutsch, T. F., Fan, John C. C., Ehrlich, D. J., Turner, G. W., Chapman, R. L., and Gale, R. P., Appl. Phys. Lett. 40 (8), 722 (1982).CrossRefGoogle Scholar
5. Sato, F., Sunada, T., and Chikawa, J. I., Materials Letters 1, 111 (1982).CrossRefGoogle Scholar
6. Cohen, C., Siejka, J., Pribat, D., Berti, M., Drigo, A. V., Bentini, G. G., and Jannitti, E., presented at M.R.S. Meeting, Europe (Strasbourg, May 1983), in press in Journal de Physique.Google Scholar
7. As the ZrO2 cell is held at 800°C, an inert gas has to be used for the oxygen measurements in order to avoid thermodynamic reduction of ZrO2. The calibration has been performed with argon N55 from Air Liquide (containing less than 1 ppm O2) according to the process described in the text (5 cycles of loading at 20 atm and evacuation at 10−1 Torr).Google Scholar
8. Chaplart, J., Fay, B., and Linh, N. T., J. Vac. Sci. Technol. B, to be published Oct/Dec 1983.Google Scholar
9. Tsu, R., Baglin, J. E., Lasher, G. J., and Tsang, J. C., Appl. Phys. Lett. 34, 153 (1979).CrossRefGoogle Scholar
10. Pribat, D., Delage, S., Dieumegard, D., Croset, M., Srivastava, P. C., and Bourgoin, J., in Laser-Solid Interactions and Transient Thermal Processing of Materials, Eds. Narayan, J., Brown, W. L. and Lemons, R. A. - North Holland, Amsterdam (1983).Google Scholar
11. Cohen, C., Siejka, J., Berti, M., Drigo, A. V., Bentini, G. G., Pribat, D., and Jannitti, E., in press in J. Appl. Phys.Google Scholar
12. Bert, M., Venger, C., and Martin, G. M., Electron. Lett. 17, 873 (1981) and references therein.CrossRefGoogle Scholar