Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T03:24:18.685Z Has data issue: false hasContentIssue false

The Dynamics of the Guests in Filled Germanium Clathrates

Published online by Cambridge University Press:  01 February 2011

Raphael P. Hermann
Affiliation:
R.Hermann@ulg.ac.be, University of Liege, Physics, Allee du 6 Aout, 17 Bat. B5, Liege, N/A, 4000, Belgium, ++ 32 4 3663630, ++ 32 4 3664516
Fernande Grandjean
Affiliation:
fgrandjean@ulg.ac.be
Veerle Keppens
Affiliation:
vkeppens@utk.edu
Werner Schweika
Affiliation:
w.schweika@fz-juelich.de
George S. Nolas
Affiliation:
gnolas@cas.usf.edu
David G. Mandrus
Affiliation:
mandrusdg@ornl.gov
Brian C. Sales
Affiliation:
salesbc@ornl.gov
Hans M. Christen
Affiliation:
christenhm@ornl.gov
Pierre Bonville
Affiliation:
bonville@drecam.saclay.cea.fr
Gary J. Long
Affiliation:
glong@umr.edu
Get access

Abstract

In the filled gallium-germanium clathrates, R8Ga16Ge30, where R is Ba, Sr, or Eu, the guests are located in two large cages and are weakly bound to the crystalline clathrate framework. The caged guests exhibit a localized “rattling” vibrational mode that provides an efficient mechanism for reducing the thermal conductivity. Inelastic neutron scattering and nuclear inelastic scattering measurements have yielded the phonon density of states in R8Ga16Ge30; the line width of the localized vibrational modes is found to be an important parameter in determining the lattice thermal conductivity. Neutron diffraction studies on R8Ga16Ge30 have shown that the guests in the larger cage are located off-center, and it was proposed that their jumping about the four off-center locations is responsible for the observed glass-like thermal conductivity at temperatures below 10 K. The detection of such slow guest motion is challenging because the typical time and energy scales involved are ca. 4 ns and 1 µeV, respectively. We have studied the slow europium tunneling dynamics in Eu4Sr4Ga16Ge30 by both Mössbauer and microwave absorption spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slack, G. A., C.R.C. Handbook of Thermoelectrics, p. 470 (CRC, Boca Raton, FL, 1995).Google Scholar
2. Keppens, V. et al. , Nature 395, 876 (1998).Google Scholar
3. Hermann, R. P. et al. , Phys. Rev. Lett. 90, 135505 (2003).Google Scholar
4. Viennois, R. et al. , Phys. Chem. Chem. Phys. 7, 1617 (2005).Google Scholar
5. Hazony, Y. and Ruby, S. L., J. Chem. Phys. 49, 1478 (1968).Google Scholar
6. Baumert, J. et al. , Phys. Rev. B 68, 174301 (2003).Google Scholar
7. Cohn, J. L. et al. , Phys. Rev. Lett. 82, 779 (1999).Google Scholar
8. Chakoumakos, B. C. et al. , J. Alloys Comp. 322, 127 (2001).Google Scholar
9. Paschen, S. et al. , Phys. Rev. B 64, 214404 (2001).Google Scholar
10. Sales, B. C. et al. , Phys. Rev. B 63, 245113 (2001).Google Scholar
11. Nolas, G. S. et al. , Phys. Rev. B 61, 3845 (2000).Google Scholar
12. Bentien, A. et al. , Phys. Rev. B 71, 144107 (2005).Google Scholar
13. Bentien, A. et al. , Phys. Rev. B 69, 045107 (2004).Google Scholar
14. Nolas, G. S. and Kendziora, C. A., Phys. Rev. B 62, 7157 (2000).Google Scholar
15. Dong, J., et al. , Phys. Rev. Lett. 86, 2361 (2000).Google Scholar
16. Zerec, I. et al. , Phys. Rev. Lett. 92, 185502 (2004).Google Scholar
17. Keppens, V. et al. , Physica B 316–317, 95 (2002).Google Scholar
18. Baumbach, R. et al. , Phys. Rev. B 71, 024202 (2005).Google Scholar
19. Hermann, R. P. et al. , Phys. Rev. B 72, 174301 (2005).Google Scholar
20. Keppens, V. et al. , Phil. Mag. Lett. 80, 802 (2000).Google Scholar
21. Dong, J. et al. , J. Appl. Phys. 87, 7726 (2000).Google Scholar
22. Gou, W. et al. , Phys. Rev. B 71, 174307 (2005).Google Scholar
23. Seto, M. et al. , Phys. Rev. Lett. 74, 3828 (1995).Google Scholar
24. Sturhahn, W. et al. , Phys. Rev. Lett. 74, 3832 (1995).Google Scholar
25. Bryant, G. H., Principles of Microwave Measurements (IEE, London, 1993).Google Scholar
26. Nolas, G. S. et al. , Appl. Phys. Lett. 73, 178 (1998).Google Scholar
27. Elliott, S. R., The Physics and Chemistry of Solids (Wiley, 1995).Google Scholar
28. Goto, T. et al. , Phys. Rev. B 70, 184126 (2004).Google Scholar
29. Bryan, J. D. et al. , Phys. Rev. B 68, 174429 (2003).Google Scholar
30. Long, G. J. and Grandjean, F., Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 3 (Plenum Press, New York, 1984).Google Scholar
31. Woods, G. et al. , in preparation.Google Scholar
32. Dattagupta, S. and Blume, M., Phys. Rev. B 10, 4540 (1974).Google Scholar