Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T19:14:39.804Z Has data issue: false hasContentIssue false

Early Stages of Sintering of Si3N4 Nanoclusters Via Parallel Molecular Dynamics

Published online by Cambridge University Press:  10 February 2011

Kenji Tsuruta
Affiliation:
Concurrent Computing Laboratory for Material SimulationsDepartment of Physics & Astronomy, Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803-4001
Andrey Omeltchenko
Affiliation:
Concurrent Computing Laboratory for Material SimulationsDepartment of Physics & Astronomy, Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803-4001
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Material SimulationsDepartment of Physics & Astronomy, Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803-4001
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Material SimulationsDepartment of Physics & Astronomy, Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803-4001
Get access

Abstract

We investigate early stages of sintering of silicon nitride (Si3N4) nanoclusters by molecular-dynamics (MD) simulations on parallel computers. Within 100 pico seconds, an asymmetric neck is formed between nanocrystals at 2,000K. In the neck region, there are more four-fold than three-fold coordinated Si atoms. In contrast, amorphous nanoclusters develop a symmetric neck, which has nearly the same number of three-fold and four-fold coordinated Si atoms. In the case of sintering among three nanoclusters, a chain-like structure forms in 200 pico seconds. The present study shows that sintering is driven by rapid diffusion of surface atoms and cluster rearrangement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sintering Key Papers, eds. Somiya, S. and Moriyoshi, Y. (Elsevier Applied Science, London, 1990); Sintering Processes, ed. G. C. Kuczynski (Plenum Press, New York, 1980), vol. 13.Google Scholar
2. Silicon Nitride Ceramics: Scientific and Technological Advances, eds. Chen, I.-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T.-S., Mater. Res. Soc. Symp. Proc. vol.287, 1993.Google Scholar
3. Pechenik, A., Piermarini, G. J., and S Danforth, C., J. Am. Ceram. Soc. 75, 3283 (1992).Google Scholar
4. Karch, J., Birringer, R., and Gleiter, H., Nature (London) 330, 556 (1987); R. W. Siegel, in Materials Interfaces: Atomic-Level Structure and Properties, eds. D. Wolf and S.Yip (Chapman and Hall, London, 1992), p. 431.Google Scholar
5. Bonevich, J. E. and Marks, L. D., in Nanophase and Nanocomposite Materials, eds. S. Komarneni, J. C.Parker, and G. J. Thomas, Mater. Res. Soc. Symp. Proc. vol. 286, 1993; H. Hahn and R. S. Averback, Nanostruct. Mater. 1, 95 (1992).Google Scholar
6. Herring, C., J. Appl. Phys. 21, 301 (1950); R. Sempéré, D. Bourret, T. Woignier, J. Phalippou, and R. Jullien, Phys. Rev. Lett. 71, 3307 (1993).Google Scholar
7. Hobbs, L. W., J. Non-Crystalline Solids 182, 27 (1995).Google Scholar
8. Madhukar, A., Thin Solid Films 231, 8 (1993).Google Scholar
9. Vashishta, P., Kalia, R. K., Rino, J. P., and Ebbsjö, I., Phys. Rev. B 41, 12197 (1990).Google Scholar
10. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, (Oxford University Press, Oxford, 1990).Google Scholar
11. Vashishta, P., Kalia, R. K., and Ebbsjö, I., Phys. Rev. Lett. 75, 858 (1995); C.-K. Loong, P. Vashishta, R. K. Kalia, and I. Ebbsjö, Europhys. Lett. 31, 201 (1995).Google Scholar
12. Misawa, M., Fukunaga, T., Niihara, K., Hirai, T., and Suzuki, K., J. Non-Crystalline Solids 34, 313 (1979); S. C. Moss and D. L. Price, in Physics of Disordered Materials, eds. D. Adler, H. Fritzsche, and S. R. Ovshinski (Plenum, New York, 1985), p. 77.Google Scholar
13. Omeltchenko, A., Nakano, A., Kalia, R. K., and Vashishta, P., to appear in Europhys. Lett.; Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. Lett. 75, 3138 (1995).Google Scholar
14. Landau, L. D. and Lifshitz, E. M., Statistical Physics (Pergamon, Oxford, 1993); the Wulff s construction requires the computation of surface energies along different directions. For a given orientation, periodic boundary conditions were removed and the surface energy of crystalline αX-Si3N4 was calculated after relaxing the system with the conjugate gradient method.Google Scholar