Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-16T08:03:13.637Z Has data issue: false hasContentIssue false

Ecr Etching of GaP, GaAs, InP, and InGaAs in Cl2/Ar, Cl2/N2, BCl3/Ar, and BCl3/N2

Published online by Cambridge University Press:  10 February 2011

R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
A. G. Baca
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
D. J. Rieger
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
H. Hou
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
S. J. Pearton
Affiliation:
University of Florida, Gainesville, FL 32611
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Electron cyclotron resonance (ECR) etching of GaP, GaAs, InP, and InGaAs are reported as a function of percent chlorine-containing gas for Cl2/Ar, Cl2/N2, BCl3/Ar, and BCl3/N2 plasma chemistries. GaAs and GaP etch rates were faster than InP and InGaAs, independent of plasma chemistry due to the low volatility of the InClx, etch products. GaAs and GaP etch rates increased as %Cl2 was increased for Cl2/Ar and Cl2/N2 plasmas. The GaAs and GaP etch rates were much slower in BCl3-based plasmas due to lower concentrations of reactive Cl, however enhanced etch rates were observed in BCl3/N2 at 75% BCl3. Smooth etched surfaces were obtained over a wide range of plasma chemistries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S. J., Ren, F., Katz, A., Lothian, J. R., Fullowan, T. R., and Tseng, B., J. Vac. Sci. Technol. B 11, 152 (1993).Google Scholar
2. Hu, E. L. and Howard, R. E., Appl. Phys. Lett. 37, 1022 (1980).Google Scholar
3. Cheung, R., Lee, Y. H., Lee, K. Y., Smith, T. P. III, Kein, D. P., Beaumont, S. P., and Wilkinson, C. D. W., J. Vac. Sci. Technol. B 7, 1462 (1989).Google Scholar
4. Pang, S. W., J. Electrochem. Soc. 133, 784 (1986).Google Scholar
5. Pearton, S. J., Chakrabarti, U. K., Perley, A. P., and Hobson, W. S., J. Electrochem. Soc. 138, 1432 (1991).Google Scholar
6. Law, V. J., Tewordt, M., Ingram, S. G., and Jones, G. A. C., J. Vac. Sci. Technol. B 9, 1449 (1991).Google Scholar
7. Werking, J., Schramm, J., Nguyen, C., Hu, E. L., and Kroemer, H., Appl. Phys. Lett. 58, 2003 (1991).Google Scholar
8. Shul, R. J., Howard, A. J., Vartuli, C. B., Barnes, P. A., and Weng, S., J. Vac. Sci. Technol. A, accepted.Google Scholar
9. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).Google Scholar
10. Constantine, C., Baratt, C., Pearton, S. J., Ren, F., and Lothian, J. R., Appl. Phys. Lett. 61, 2899 (1992).Google Scholar
11. Constantine, C., Baratt, C., Pearton, S. J., Ren, F., and Lothian, J. R., Electron. Lett. 28, 1749 (1992).Google Scholar
12. Ren, F., Lothian, J. R., Kuo, J. M., Hobson, W. S., Lopata, J., Caballero, J. A., Pearton, S. J., and Cole, I. W., J. Vac. Sci. Technol. B14, 1 (1995).Google Scholar
13. Ren, F., Hobson, W. S., Lothian, J. R., Lopata, J., Caballero, J. A., Pearton, S. J., and Cole, M. W., Appl. Phys. Lett. 67, 2497 (1995).Google Scholar
14. III, S. Thomas, Ko, K. K., Pang, S. W., J. Vac. Sci. Technol. A 13, 894 (1995).Google Scholar
15. Pearton, S. J., Chakrabarti, U. K., Perley, A. P., and Jones, K. S., J. Appl. Phys. 68, 2760 (1990 Google Scholar