Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T04:42:09.708Z Has data issue: false hasContentIssue false

The Effect of Ag Addition on the Corrosion of Zn-22wt%Al Alloys

Published online by Cambridge University Press:  15 February 2011

Flores M.
Affiliation:
Departamento de Ingeniería de Proyectos, CUCEI, Univ. de Guadalajara, A. P. 307, Zapopan, Jal., 45101, México.
Huerta L.
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, A. P. 70–360, México D.F., 04510, México.
Casolco S. R.
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, A. P. 70–360, México D.F., 04510, México.
Muhl S.
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, A. P. 70–360, México D.F., 04510, México.
Torres-Villaseñor G.
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, A. P. 70–360, México D.F., 04510, México.
Luna J.A.
Affiliation:
Departamento de Ingeniería de Proyectos, CUCEI, Univ. de Guadalajara, A. P. 307, Zapopan, Jal., 45101, México.
Get access

Abstract

A new Zn–Al-Ag alloy (ZINAG) with mechanical superplastic properties has been developed. In this work four of the Zn–22wt%Al eutectoid alloy doped with between 0.5 to 4.24 wt% Ag have been studied. The superplastic behavior can be explained as a consequence of the fine grain distribution induced during the deformation process. Here the corrosion resistance of these alloys was studied by means of potentiodynamic polarization and measurements of the temporal evolution of the corrosion potential, in a 0.5 M NaCl solution. The corrosion products in the sample surface were analyzed by Rutherford Backscattering Spectrometry (RBS), X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). It was found that the corroded surface had lost more Zn than Al. The surface was examined by SEM and it was seen that the corrosion products adhered to the surface cracks. It was found that the alloy with 2.12 wt% concentration of Ag had the best corrosion resistance in the electrolyte used, but no clear tendency with the Ag concentration was found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Torres-Villaseñor, G., Microestructura y Propiedades Mecánicas del Zinalco, Ciencia, No. 39, México, (1988) 103111,Google Scholar
2. Torres-Villaseñor, G., “El Aluminio en Latinoamérica”, Estado de la Industria del Aluminio en el Mundo, Ed. Unam, , México, 1983.Google Scholar
3. Zhu, Y. H., Torres Villaseñor, G., and Piña, C.. J. Mater. Sci. 29, (1994) p.1549 Google Scholar
4. Ling, F.W. and Laughlin, D.E., Metall. Trans. A, 10 (1979) p. 921.Google Scholar
5. Flores, M., Blanco, O., Muhl, S., et al., Surf. Coat. Technol. 108-109 (1998) 449–6. M. P. Seah and I. S. Gilmore, J. of Vacuum Science & Technology A, Volume 14 (1996), Issue 3, pp. 1401-1407Google Scholar
7. Scofield, J.H., Journal Electron Spectrosc. 8 (1976) 129.Google Scholar
8. Matej, Mayer, Simnra software, F. J. Institut für Plasmaphysik, Germany, 1998. 9.Google Scholar
9. Wagner, C.D., Passoja, D.E., Hillery, H.F., Kinisky, T.G., Six, H.A., Jansen, W.T., Taylor, J.A. J. Vac. Sci. Technol. 21, 933 (1982).Google Scholar