Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T02:16:14.436Z Has data issue: false hasContentIssue false

Effect of Electron Irradiation and Excess Cd on Ion-Assisted Doping of p-CdTe Thin Films

Published online by Cambridge University Press:  03 September 2012

D. Kim
Affiliation:
Department of Materials Science and Engineering, Stanford University Stanford, California 94305–2205
A. L. Fahrenbruch
Affiliation:
Department of Materials Science and Engineering, Stanford University Stanford, California 94305–2205
A. Lopez-Otero
Affiliation:
Department of Materials Science and Engineering, Stanford University Stanford, California 94305–2205
R. H. Bube
Affiliation:
Department of Materials Science and Engineering, Stanford University Stanford, California 94305–2205
Get access

Abstract

Ion-assisted doping of homoepitaxial p-CdTe films with low energy P ions (20 eV) deposited by vacuum evaporation has been investigated. In order to control the properties of the films, we applied low energy electron irradiation and Cd overpressure during the growth. We report the results of measurements of hole density, spectral response of Cr/p-CdTe Schottky barriers (to estimate the minority carrier diffusion length Lj). From Ld, we have found that the quality of the films is dependent on both the ion dose and the ion energy. By reducing the ion energy to 20 eV and applying electron irradiation and Cd overpressure, p-CdTe films with p = 1 × 10 17 cm−3 and Lp =0.35 μm were obtained. A p-CdTe film with p = 1016 cm−3 was obtained with a low ion energy of 10eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ullal, H. S., Stone, J. L., Zweibel, K., Surek, T., and Mitchell, R. L., Proc. 6th Int'l Photovoltaic Science and Engineering, to be published (1992).Google Scholar
2. Kim, D., Fahrenbruch, A. L., Lopez-Otero, A., and Bube, R. H., in preparation to be published,Google Scholar
3. Fortmann, C. M., Fahrenbruch, A. L., and Bube, R. H., J. Appl. Phys. 61, 2038 (1987).Google Scholar
4. Fahrenbruch, A. L., Kim, D., Lopez-Otero, A., Int'l. J. Solar Energy to be published, autumn 1992.Google Scholar
5. Sharps, P., Fahrenbruch, A. L., Lopez-Otero, A., and Bube, R. H., J. Appl. Phys. 68 (12), 6406 (1990).Google Scholar
6. Harper, R. L. Jr, et al., Appl. Phys. Lett. 54 (2), 170 (1989).Google Scholar
7. Wu, Y. S., Waag, A., and Bicknell-Tassius, R. N., J. Appl. Phys. 69 (1), 268 (1991).Google Scholar
8. Singh, J. and Arias, J., J. Vac. Sci. Technol. A7 (4), 2562 (1989).Google Scholar
9. Arias, J. M., Shin, S. H., Cooper, D. E., Zandian, M., Pasko, J. G., and Singh, J., J. Vac. Sci. Technol. A8 (2), 1025 (1990).Google Scholar
10. Wu, Y. S., Waag, A. and Bicknell-Tassius, R. N., Appl. Phys. Lett. 57 (17), 1754 (1990).Google Scholar
11. Hill, R., Owens, T., Arshed, S., and Miles, R. W., Proc. 20th IEEE Photovoltaics Specialists Conference, 1662 (1988).Google Scholar
12. Benson, J. D., Rajavel, D., Wagner, B. K., Benz, R. II, and Summers, C. J., J. Cryst. Growth 95, 543 (1989).Google Scholar
13. Waag, A., Wu, Y. S., Bicknell-Tassius, R. N., and Landwehr, G., Appl. Phys. Lett. 54 (26), 2662 (1989).Google Scholar
14. Anthony, T. C., Fahrenbruch, A. L., and Bube, R. H., J. Electron. Mater. 11, 89 (1982).Google Scholar
15. Lu, Y., Ph. D. Thesis, Stanford University, Stanford, California, 85 (1987).Google Scholar
16. Brandt, G., Ennen, H., Moritz, R., and Rothemund, W., J. Cryst. Growth 101, 226 (1990).Google Scholar
17. Mitchell, K. W., Fahrenbruch, A. L., and Bube, R. H., J. Appl. Phys. 48 (10), 4365 (1977).Google Scholar