Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-18T10:10:33.856Z Has data issue: false hasContentIssue false

Effect of Filament Material on the Decomposition of SiH4 in Hot Wire CVD of Si-Based Films

Published online by Cambridge University Press:  01 February 2011

H. L. Duan
Affiliation:
Department of Chemical EngineeringStanford University Stanford, CA 94305
G. A. Zaharias
Affiliation:
Department of Chemical EngineeringStanford University Stanford, CA 94305
Stacey F. Bent
Affiliation:
Department of Chemical EngineeringStanford University Stanford, CA 94305
Get access

Abstract

The choice of filament material has an effect on the decomposition of silane during the hot wire chemical vapor deposition (HW-CVD) of amorphous and microcrystalline silicon films. The Si radicals produced from W, Re, Mo and Ta filament materials have been probed by laserbased single photon ionization (SPI) as a function of hot wire temperature. The Si radical profiles are shown to demonstrate two distinct regimes: a regime below 1600°C-1800°C (depending on filament material) limited by surface reaction at the filament in which Si concentration increases monotonically; and a mass transfer limited regime above 1600°C-1800°C where Si intensity saturates. The apparent activation energy of Si radical production in the surface reaction regime from Ta (140-170 kcal/mol) is found to be close to the corresponding Si thermal desorption energy from a Ta surface, suggesting that the Si production is controlled by the desorption process from the bare metal. On the other hand, the Si activation energies from W and Re (30-60 kcal/mol) are lower than the related desorption energies, suggesting that other rate limiting reactions play a role for these materials. The apparent activation energy for the Mo surface (60-90 kcal/mol) is intermediate between the other metal values. In addition to the Si radical study, corresponding film deposition is detected in situ by multiple internal reflection infrared (MIR-IR) spectroscopy. The IR measurements have been used to estimate the growth rate of a-Si:H deposited on a Ge substrate. The results show similar activation energies for both the growth rate and the Si formation from a W filament, implying that Si radical production and subsequent film growth may be dominated by the same elementary reactions within the decomposition and film growth processes at low pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mahan, A. H., Thin Solid Films 395, 12 (2001).Google Scholar
2. Schropp, R.E.I., Thin Solid Films 395 (1-2), 17 (2001).Google Scholar
3. Matsumura, Hideki, Thin Solid Films 395, 1 (2001).Google Scholar
4. Wu, Ruihua, Luo, Zhiqiang, Liu, Li et al., Sol. Energy Mater. Sol. Cells 62, 193 (2000).Google Scholar
5. Mahan, A. H., Mason, A., Nelson, B. P. et al., Mater. Res. Soc. Symp. Proc. 609 (2000).Google Scholar
6. Morrison, Scott and Madan, Arun, J. Vac. Sci. Technol. A 19 (6), 2817 (2001).Google Scholar
7. Veenendaal Onno, Patrick A. T. T. van, Gijzeman, L. J., Rath, Jatindra K. et al., Thin Solid Films 395, 194 (2001).Google Scholar
8. Duan, H. L., Zaharias, G. A., and Bent, S. F., Appl. Phys. Lett. 78 (12), 1784 (2001).Google Scholar
9. Duan, H. L., Zaharias, G. A., and Bent, S. F., Thin Solid Films 395 (3), accepted36 (2001).Google Scholar
10. Duan, H. L., Zaharias, G. A., and Bent, Stacey F., Mater. Res. Soc. Symp. Proc. 664, A 3.1.2 (2001).Google Scholar
11. Doyle, J., Robertson, R., Lin, G. H. et al., J. Appl. Phys. 64 (6), 3215 (1988).Google Scholar
12. Duan, H. L. and Bent, Stacey F., Mater. Res. Soc. Symp. Proc. 569, 179 (1999).Google Scholar
13. Lee, Moon-Sook and Bent, Stacey F., J. Appl. Phys. 87 (9), 4600 (2000).Google Scholar
14. Redhead, P. A., Vacuum 12 (4), 203 (1962).Google Scholar
15. Matsumura, Hideki, Masuda, Atsushi, and Izumi, Akira, Mater. Res. Soc. Symp. Proc. 557, 67 (1999).Google Scholar
16. Zedlitz, R., Kessler, F., and Heintze, M., J. Non-Cryst. Solids 164-166, 83 (1993).Google Scholar
17. Walsh, Robin, Acc. Chem. Res 14, 246 (1981).Google Scholar
18. Tange, Shinya, Inoue, Keisuke, Tonokura, Kenichi et al., Thin Solid Films 395, 42 (2001).Google Scholar
19. Holt, Jason K., Swiatek, Maribeth, Goodwin, David G. et al., Mat. Res. Soc. Symp. Proc. 664, A3.2 (2001).Google Scholar
20. Ageev, V. N. and Yu, E.. Afanas'eva, Poverkhnost 7, 30–7 (1987).Google Scholar
21. Gall, N.R., Rut'kov, E.V., and Tontegode, A.Y., Sov. Phys. Tech. Phys. 35 (4), 475 (1990).Google Scholar
22. Ageev, V. N., Afanas'eva, E. Yu., Potekhina, N. D. et al., Physics of the Solid State 42 (2), 356 (2000).Google Scholar
23. Lucovsky, G., Nemanich, R. J., and Knights, J. C., Physical Review B 19 (4), 2064 (1979).Google Scholar
24. Lee, Szetsen S., Kong, Maynard J., Bent, Stacey F. et al., J. Phys. Chem. 100, 20015 (1996).Google Scholar
25. Marra, Denise C., Edelberg, Erik A., Naone, Ryan L. et al., J. Vac. Sci. Technol. A 16 (6), 3199 (1998).Google Scholar