Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-07T13:09:37.873Z Has data issue: false hasContentIssue false

Effect of Surface Treatments in Nanocrystalline Silicon

Published online by Cambridge University Press:  11 February 2011

N. P. Mandal
Affiliation:
Department of Physics, Indian Institute of Technology Kanpur, 208016, India
S. Dey
Affiliation:
Department of Physics, Indian Institute of Technology Kanpur, 208016, India
S. C. Agarwal
Affiliation:
Department of Physics, Indian Institute of Technology Kanpur, 208016, India
Get access

Abstract

Exposure to ammonia (NH3) increases the dark current (DC) in porous silicon (PS), but evaporated selenium (Se) deposited on PS decreases DC. Photoluminescence (PL) measurement shows that there are two types of centers. PL in one region of PS (Peak ∼ 800nm) initially increases with the NH3 exposure and then decreases. But the PL from another region of PS has a peak at ∼ 780nm and it decreases continuously with the NH3 exposure. Dipping PS in water and drying in air shifts the PL peak at 800 nm to 744 nm. Atomic Force Microscopy (AFM) shows that the as prepared sample has wires of diameters 2.4nm, 3.4nm, 4.6nm and bigger. However, in the AFM images of the water treated sample the wires of diameters 3.4nm and 4.6nm are absent. The PL results are explained using the AFM data and the John-Singh model of quantum confinement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

For a review, see for example, Bisi, O., Ossicini, S. and Pavesi, L., Surf. Sci. Reports 38, 1 (2000).Google Scholar
2. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3. Koch, F., Petrova-Koch, V. and Muschik, T., J. Lumin. 57, 271(1993).Google Scholar
4. Seals, L., Gole, J. L., Tse, L. A. and Hesketh, P. J., J. Appl. Phys. 91, 2519 (2002).Google Scholar
5. Snow, P. A., Squire, E. K., Russell, P.St.J. and Canham, L. T., J. Appl. Phys. 86, 1718 (1999).Google Scholar
6. Gao, J., Gao, T. and Sailor, M. J., Appl. Phys. Lett. 77, 901 (2000).Google Scholar
7. Mulloni, V. and Pavesi, L., Appl. Phys. Lett. 76, 2523 (2000).Google Scholar
8. Allcock, P. and Snow, P. A., J. Appl. Phys. 90, 5052 (2001).Google Scholar
9. Fukuda, Y., Yu, Y., Zhou, W., Furuya, K and Suzuki, H., J. Electrochem. Soc. 147, 3917 (2000).Google Scholar
10. Hou, X. Y., Shi, G., Wang, W., Zhang, F. L., Hao, P. H., Huang, D. M. and Wang, X., Appl. Phys. Lett. 62, 1097 (1993).Google Scholar
11. Dittrich, Th. and Timoshenko, V. Yu., J. Appl. Phys. 75, 5436 (1994).Google Scholar
12. Boarino, L., Baratto, C., Geobaldo, F., Amato, G., Comini, E., Rossi, A. M., Faglia, G., Lerondel, G., Sberveglieri, G., Mater. Sci. Eng. B 69–70, 210 (2000).Google Scholar
13. Ben-Chorin, M., Kux, A., Schechter, I., Appl. Phys. Lett. 64, 481 (1994).Google Scholar
14. John, G. C. and Singh, V. A., Phys. Rev. B 50, 5329 (1994).Google Scholar
15. Zimin, S. P., Semiconductors. 34, 353 (2000).Google Scholar
16. Tanielian, M., Fritzsche, H.. Tsai, C. C. and Symbalisty, E., Appl. Phys. Lett. 33, 353 (1978).Google Scholar
17. Mandal, N.P., Dey, S. and Agarwal, S.C., in Seventh International Symposium on Advancement in Electrochemical Science and Technology (ISAEST-VII) Nov 27–29, 2002 at Chennai and to be published.Google Scholar
18. Physics of Group IV elements and III-V compounds, edited by Madelung, O., (Springer, New York, 1982).Google Scholar
19. Read, A. J., Needs, R. J., Nash, K. J., Canham, L. T., Calcott, P. D. J., and Qteish, A., Phys. Rev. Lett. 69, 1232 (1993).Google Scholar