Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:44:28.253Z Has data issue: false hasContentIssue false

The Effect of Titanium Oxide Substrate on the Film Morphology and Photoluminescence Properties of Organometal Halide Perovskites

Published online by Cambridge University Press:  16 June 2015

Zhihua Xu
Affiliation:
Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, U.S.A.
Zhengtao Chen
Affiliation:
Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, U.S.A.
Get access

Abstract

We have investigated the film morphology and photoluminescence properties of spin-coated CH3NH3PbI3-xClx films on mesoporous and compact TiO2 substrates. We observe that the perovskite film deposited on the mesoporous substrate composed of 20 nm TiO2 nanopaticles exhibits relatively uniform grain size, while the films deposited on the compact TiO2 substrate and the mesoporous substrate with large TiO2 nanoparticles (200 nm) show highly heterogeneous film morphology. The heterogeneity of film morphology has significant effect on the photoluminescence spectra and lifetime of the perovskite films. The result of time-resolved confocal microscopy unveils the relation between film structure and photoluminescence properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xiao, Z. G., Yuan, Y. B., Shao, Y. C., Wang, Q., Dong, Q. F., Bi, C., Sharma, P., Gruverman, A. and Huang, J. S., Nat. Mater. 14 (2), 193198 (2015).CrossRefGoogle Scholar
Liu, M. Z., Johnston, M. B. and Snaith, H. J., Nature 501 (7467), 395-+ (2013).CrossRefGoogle Scholar
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K. and Gratzel, M., Nature 499 (7458), 316-+ (2013).CrossRefGoogle Scholar
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. and Snaith, H. J., Science 338 (6107), 643647 (2012).CrossRefGoogle Scholar
Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., J. Am. Chem. Soc. 131 (17), 6050-+ (2009).CrossRefGoogle Scholar
Zhou, H. P., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., Hong, Z. R., You, J. B., Liu, Y. S. and Yang, Y., Science 345 (6196), 542546 (2014).CrossRefGoogle Scholar
Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B., and Herz, L. M., J. Phys. Chem. Lett. 5, 13001306 (2014).CrossRefGoogle Scholar
De Bastiani, M., D’Innocenzo, V., Stranks, S. D., Snaith, H. J., and Petrozza, A., APL Mater. 2, 081509 (2014).CrossRefGoogle Scholar
Choi, J. J., Yang, X. H., Norman, Z. M., Billinge, S. J. L. and Owen, J. S., Nano Lett. 14 (1), 127133 (2014).CrossRefGoogle Scholar
D’Innocenzo, V., Kandada, A. R. S., De Bastiani, M., Gandini, Marina, and Petrozza, A., J. Am. Chem. Soc. 136, 1773017733(2014).CrossRefGoogle Scholar