Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-03T09:02:41.523Z Has data issue: false hasContentIssue false

Effects of Crystallographic Texture on Internal Stress Superplasticity Induced by Anisotropic Thermal Expansion

Published online by Cambridge University Press:  10 February 2011

K. Kitazono
Affiliation:
The Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan
R. Hirasaka
Affiliation:
Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-8588, Japan
E. Sato
Affiliation:
The Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan
K. Kuribayashi
Affiliation:
The Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan
T. Motegi
Affiliation:
Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-8588, Japan
Get access

Abstract

Polycrystalline materials having crystallographic anisotropy show internal stress superplasticity under thermal cycling conditions. The deformation mechanism is analyzed using a theoretical model based on continuum micromechanics including the effects of crystallographic texture. The model is experimentally verified through the thermal cycling creep tests using polycrystalline zinc having two kinds of fiber-texture, and agrees well with the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sherby, O. D. and Wadsworth, J., Mater. Sci. Tech. 1, 925 (1985).10.1179/mst.1985.1.11.925Google Scholar
2. Jong, M. de and Rathenau, G. W., Acta metall. 9, 714 (1961).10.1016/0001-6160(61)90101-8Google Scholar
3. Greenwood, G. W. and Johnson, R. H., Proc. Roy. Soc. London 283A, 403 (1965).Google Scholar
4. Wu, M. Y. and Sherby, O. D., Scripta metall. 18, 773 (1984).10.1016/0036-9748(84)90392-2Google Scholar
5. Sato, E. and Kuribayashi, K., Acta metall. mater. 41, 1759 (1993).10.1016/0956-7151(93)90195-XGoogle Scholar
6. Lobb, R. C., Sykes, E. C. and Johnson, R. H., Met. Sci. J. 6, 33 (1972).10.1179/030634572790445876Google Scholar
7. Wu, M. Y., Wadsworth, J. and Sherby, O. D., Metall. Trans. 18A, 451 (1987).10.1007/BF02648806Google Scholar
8. Zwigl, P. and Dunand, D. C., Acta mater. 45, 5285 (1997).10.1016/S1359-6454(97)00186-9Google Scholar
9. Kitazono, K., Hirasaka, R., Sato, E., Kuribayashi, K. and Motegi, T., Acta mater. (submitted).Google Scholar
10. Eshelby, J. D., Proc. Roy. Soc. London A 241, 376 (1957).Google Scholar
11. Sato, E., Ookawara, T., Kuribayashi, K. and Kodama, S., Acta mater. 46, 4153 (1998).10.1016/S1359-6454(98)00119-0Google Scholar
12. Kitazono, K., Sato, E. and Kuribayashi, K., Acta mater. 47, 1653 (1999).10.1016/S1359-6454(98)00431-5Google Scholar
13. Flinn, J. E. and Munson, D. E., Phil. Mag. 10, 861 (1964).10.1080/14786436408225389Google Scholar
14. Field, M. and Merchant, E. M., J. Appl. Phys. 20, 741 (1949).10.1063/1.1698522Google Scholar