Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T19:03:19.269Z Has data issue: false hasContentIssue false

The Effects of Interface Strain and Dipole Layers on the Electronic Properties of Lattice Matched Rn-V Semiconductor Superlattices

Published online by Cambridge University Press:  25 February 2011

J. S. Nelson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
S. R. Kurtz
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
L. R. Dawson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. A. Lott
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
C. Y. Fong
Affiliation:
Physics Department, University of California, Davis, CA 95616
Get access

Abstract

The role of interface strain and dipole layers in detenrining the electronic properties of two lattice matched HI-V semiconductor superlattices, InAs/AIGaAsSb and GaAs/AlAs, has been investigated with the self-consistent pseudopotential method. Values for the total energies, interface structures, valence band offsets, and charge density distributions are reported. In the InAs/AlGaAsSb system, since both the group III and V sublattices are different, large intrinsic strains are present at the interface. If the interface strain is neglected in the calculation, the valence band offset is found to be 0.05 eV, in poor agreement with the experimental value of 0.21 eV obtained from infrared photoluminescence spectroscopy. The valence band offset for the relaxed structure (obtained by minimizing the total energy with respect to atomic relaxations at the interface) is 0.24 eV, in excellent agreement with the experimental value. The interface relaxations modify the interface dipole through charge transfer between interface cation and anion. In addition to the intrinsic interface strain, the effect of extrinsic interface dipole layers, both III-V (InAs, GaSb) and group IV (Si and Ge) interlayers, has been investigated in the GaAs/AlAs lattice-matched system. The III-V interlayers are not effective in changing the band offset due to small charge asymmetry and large screening of the induced dipole. On the other hand, the group IV interlayers are found to have a dramatic effect, changing the GaAs/AlAs band offset by ∼1 eV. The group IV interlayers produce a step potential at the interface, resulting in the large offset change.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tersoff, J., Heterojunction band Discontinuities:Physics and Device Applications, Ed. by Capasso, F. and Margaritondo, G. (Elsevier Science Publications, 1987).Google Scholar
2 Walle, C. G. Van de and Martin, R. M., Phys. Rev. B 35, 8154, (1987).CrossRefGoogle Scholar
3. Capasso, F., Mohammed, K., and Cho, A. Y., J. Vac. Sci. Technol. B3, 1245, (1985).CrossRefGoogle Scholar
4. Niles, D. W., Margaritondo, G., Perfetti, P., Quaresima, C., and Capozi, M., Appl. Phys. Lett. 47, 1092 (1985); see also D. W. Niles, G. Margaritondo, P. Perfetti, C. Quaresima, and M. Capozi, J. Vac. Sci. Technol. A4, 962, (1986).CrossRefGoogle Scholar
5. Sorba, L., Bratina, G., Ceccone, G., Antonini, A., Walker, J. F., Micovic, M., and Franciosi, A., Phys. Rev. B43, 2450, (1991).CrossRefGoogle Scholar
6. Munoz, A., Chetty, N., Martin, R. M., Phys. Rev. B41, 2976, (1990).Google Scholar
7. Nelson, J. S., Kurtz, S. R., Dawson, L. R., and Lott, J. A., Appl. Phys. Lett. 57, 578, (1990).CrossRefGoogle Scholar
8. Schluter, M., Chelikowsky, J. R., Louie, S. G., and Cohen, M. L., Phys. Rev. B12, 4200 (1975); J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C12, 409 (1979); K. C. Pandey, Phys. Rev. Lett. 49, 223 (1982).; I. P. Batra and S. Ciraci, Phys. Rev. B33, 4312 (1986).CrossRefGoogle Scholar
9. Bachelet, G. B., Hamann, D. R., and Schulter, M. L., Phys. Rev. B26, 4199, (1982).CrossRefGoogle Scholar
10. Wigner, E., Phys. Rev. 46, 1002, (1934).CrossRefGoogle Scholar
11. Nelson, J. S., Wright, A. F., and Fong, C. Y., Phys. Rev. B43, 4908, (1991).CrossRefGoogle Scholar
12. Chadi, D. J. and Cohen, M. L., Phys. Rev. B8, 5447, (1973).Google Scholar
13. Vandenberg, J.M., Panish, M. B., Temkin, H., and Hamm, R. A., Appl. Phys. Lett. 53, 1920 (1988); J. M. Vandenberg, M. B. Panish, R. A. Hamm, and H. Temkin, Appl. Phys. Lett. 56, 910 (1990); D. Gershoni, H. Temkin, J. M. Vandenberg, S. N. G. Chu, R. A. Hamm, and M. B. Panish, Phys. Rev. Lett. 60, 448 (1988).CrossRefGoogle Scholar
14. Klein, J., (to be published)Google Scholar
15. Hybertsen, M. S., Phys. Rev. Lett. 64, 555, (1989).CrossRefGoogle Scholar
16. Luo, L. F., Beresford, R., and Wang, W. I., Appl. Phys. Lett. 55, 2023, (1989).CrossRefGoogle Scholar
17. Luo, L. F., Beresford, R., and Wang, W. I., Appl. Phys. Lett. 53, 2320, (1988).CrossRefGoogle Scholar
18. Bastard, G., Phys. Rev. B24, 5693, (1981).CrossRefGoogle Scholar
19. Zhang, S. B., Tomanek, D., Louie, S. G., Cohen, M. L., and Hybersten, M. S., Solid State Commun. 66, 585, (1988).CrossRefGoogle Scholar
20. Godby, R. W., Schluter, M., and Sham, L. J., Phys. Rev. B37, 10159, (1988).CrossRefGoogle Scholar
21. Lott, J. A., Dawson, L. R., Jones, E. D., and Klem, J. F., submitted for publication.Google Scholar
22.Quaternary bandgap energies are based on data in Ref. 20 and calculations of Nelson, J. S. et al. , unpublished.Google Scholar
23. Batra, I. P., Ciraci, S., and Nelson, J. S., J. Vac. Sci. Technol. B5, 1300, (1987).CrossRefGoogle Scholar
24. Harrison, W. A., Kraut, E. A., Waldrop, J. R., and Grant, R. W., Phys. Rev. B18, 4402, (1978).CrossRefGoogle Scholar
25. Bylander, D. M. and Kleinman, L., Phys. Rev. B41, 3509, (1990).CrossRefGoogle Scholar
26. Martin, R. M., J. Vac. Sci. Technol. 17, 978 (1980); see also K. Kunc and R. M. Martin, Phys. Rev. B24, 3445, (1981).CrossRefGoogle Scholar
27. Baraff, G. A., Appelbaum, J. A., and Hamann, D. R., J. Vac. Sci. Technol. 14, 999, (1977).CrossRefGoogle Scholar
28. Frensley, W. R. and Kroemer, H., Phys. Rev. B16, 2642, (1977).CrossRefGoogle Scholar