Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T15:21:34.602Z Has data issue: false hasContentIssue false

The Effects of Nucleation in the Two Step Growth of HVPE GaN

Published online by Cambridge University Press:  15 February 2011

P.R. Tavernier
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, tavernip@mrl.ucsb.edu.
E.V. Etzkorn
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
Y. Wang
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
D.R. Clarke
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
Get access

Abstract

The repeatable growth of high quality thick layers of GaN by hydride vapor phase epitaxy generally requires buffer layers or other surface pretreatments to produce morphologically smooth films suitable for further device growth. Of the conditions for high quality GaN growth, proper film nucleation invariably contributes most to the overall growth of high quality films and the exclusion of impurities. We have studied a two step growth process which incorporates a low temperature HVPE grown nucleation layer and have compared it to films grown without buffer layers to determine how the impurity content and the dislocation networks change the overall film quality. Additionally we observe the formation of macroscopic steps during growth with step heights of ∼0.75 μm and terrace widths of ∼ 7 μm, which we attribute to the initial conditions of the low temperature nucleation layer prior to growth and to kinetically limited growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T. and others, Appl. Phys. Let., 73, 832 (1998).Google Scholar
2. Detchprohm, T., Hiramatsu, K., Amano, H. and Akasaki, I., Appl. Phys. Let., 61, 2688 (1992).Google Scholar
3. Molnar, R. J., Aggarwal, R., Liau, Z.L., Brown, E.R., Melngailis, I., Götz, W., Romano, L.T. and Johnson, N.M. Mater. Res. Soc. Symp. Proc. 423, 221 (1996).Google Scholar
4. Lee, J.W., Paek, H.S., Yoo, J.B., Kim, G.H. and others, Mat. Sci. Eng. B, 59, 12 (1999).Google Scholar
5. Maruska, H.P. and Tietjen, J.J., Appl. Phys. Let., 15, 327 (1969).Google Scholar
6. Naniwae, K., Itoh, S., Amano, H., Itoh, K., Hiramatsu, K. and Akasaki, I., J Cryst. Growth, 99, 381 (1990).Google Scholar
7. Srikant, V., Speck, J.S and Clarke, D.R., J. Appl. Phys., 82, 4286 (1997).Google Scholar
8. Verghese, P.M. and Clarke, D.R., J. Mater. Res., 14, 1039 (1999).Google Scholar
9. Heying, B., Averbeck, R., Chen, L., Haus, E., Riechert, H. and Speck, J.S., private communication.Google Scholar
10. Etzkom, E., Tavernier, P.R. and Clarke, D.R., presented at Mat. Res. Soc. Symp. Y (1999), San Francisco, CA.Google Scholar
11. Molnar, R.J., Nichols, K.B., Maki, P., Brown, E.R. and Melngailis, I., Mat. Res. Soc. Symp. Proc. 378, 479 (1995).Google Scholar
12. Fini, P., Wu, X., Tarsa, E.J., Golan, Y., Srikant, V., Keller, S., Denbaars, S.P and Speck, J.S., Jpn. J. Appl. Phys. Part 1, 37, 4460 (1998).Google Scholar
13. Wu, X.H., Fini, P., Tarsa, E.J., Heying, B., Mishra, U.K., Denbaars, S.P and Speck, J.S., Jpn. J. Appl. Phys. Part 2, 35, L1648 (1996).Google Scholar