Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T01:01:11.028Z Has data issue: false hasContentIssue false

Effects of Pressure on Plastic Deformation of Polycrystalline Solids: Some Geological Applications

Published online by Cambridge University Press:  10 February 2011

S. Karato*
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, karato@maroon.tc.umn.edu
Get access

Abstract

Experimental studies on the effects of pressure on plastic properties are reviewed with an emphasis on those on geological materials. High pressures may affect plastic properties through two different ways: (i) through the effects of pressure on plastic deformation of a material with a given crystal structure and (ii) through the effects of pressure-induced phase transformations on plastic deformation. It is emphasized that the manner in which pressure affects plastic properties of solids depends on the microscopic mechanisms of plastic deformation and therefore it is essential to identify the mechanisms of deformation involved in a particular experimental condition. Three mechanisms are considered: (i) the Peierls mechanism, (ii) dislocation creep (power-law creep) and (iii) diffusion creep (or superplasticity). Creep strength of materials changes with pressure through the change in shear modulus and in the activation enthalpy for the Peierls mechanism. Structural phase transformations can dramatically change the creep strength determined by the Peierls mechanism. Changes can be either positive (increase in strength in a high pressure phase) or negative (decrease in strength in a high pressure phase). Creep strength controlled by dislocation creep usually increases exponentially with pressure through the increase in the activation enthalpy with pressure. Phase transformations can change the creep strength either positively or negatively for this mechanism depending on the manner in which dislocation mobility changes with crystal structure. Creep strength corresponding to diffusion creep changes with pressure in a similar fashion as dislocation creep.

High pressures in the deep interior of Earth and other terrestrial planets could lead to a significant increase in viscosity with depth, resulting in high temperatures due to the feedback between viscosity and temperature. Also phase transformations in constituent minerals that occur in certain depth ranges can cause dramatic changes in plastic properties. Both of them are likely to have important influence on the style of convection in the mantle of terrestrial planets and thus affect their geological history and tectonic activities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frost, H. J. and Ashby, M. F., Deformation Mechanism Maps. Pergamon Press, Oxford, 1982, pp. 168.Google Scholar
2. Karato, S., in Earth's Deep Interior, edited by Crossley, D. (Gordon and Breach, Newark, NJ, 1997), pp. 223272.Google Scholar
3. Tullis, T. E. and Tullis, J., in Mineral and Rock Deformation: Laboratory Studies, edited by Hobbs, B. E. and Heard, H. C. (American Geophysical Union, Washington DC, 1986), p. 297324.Google Scholar
4. Kinsland, G. L. and Bassett, W. A., J. Appl. Phys. 48, p. 978 (1975).Google Scholar
5. Sung, C-M., Goetze, C. and Mao, H-K., Rev. Sci. Instrum. 48, p. 1386 (1977).Google Scholar
6. Meade, C. and Jeanloz, R., J. Geophys. Res. 93, p. 3261 (1988a).Google Scholar
7. Meade, C. and Jeanloz, R., J. Geophys. Res. 93, p. 3270 (1988b).Google Scholar
8. Meade, C. and Jeanloz, R., Nature 348, p. 533 (1990).Google Scholar
9. Poirier, J-P., Sotin, C. and Peyronneau, J., Nature 292, p. 225 (1981).Google Scholar
10. Fujimura, A. et al., Proceedings of Annual Meeting of Seismological Society of Japan (1981).Google Scholar
11. Bussod, G. Y., Katsura, T. and Rubie, D. C, PAGEOPH 141, p. 579 (1993).Google Scholar
12. Durham, W. B. and Rubie, D. C, in Geophysical Monograph Series, edited by Manghnani, M. H. and Syono, Y. (American Geophysical Union, Washington, DC), in press.Google Scholar
13. Karato, S., Toriumi, M. and Fujii, T., Geophys. Res. Lett. 7, p. 649 (1980).Google Scholar
14. Karato, S. and Rubie, D. C, J. Geophys. Res. 102, p. 20, 111 (1997).Google Scholar
15. Karato, S., Dupas-Bruzek, C. and Rubie, D. C, submitted to Nature.Google Scholar
16. Weidner, D. J., Wang, Y. and Vaughan, M. T., Geophys. Res. Lett. 21, p. 753 (1994).Google Scholar
17. Weidner, D. J., Wang, Y. and Vaughan, M. T., Science 266, p. 419 (1994).Google Scholar
18. Chen, J. et al., Geophys. Res. Lett, in press.Google Scholar
19. Nabarro, F. R. N., Theory of Crystal Dislocations. (Oxford University Press, Oxford, 1967), pp. 821.Google Scholar
20. Takeuchi, S. and Suzuki, T., in Strength of Metals and Alloys, edited by Kettunenm, P. O., Leipisto, T. K. and Lehtonen, M. E. (Pergamon Press, Oxford, 1989), p. 161166.Google Scholar
21. Sherby, O. D., Robbins, J. L. and Goldberg, A., J. Appl. Phys. 41, p. 3961 (1970).Google Scholar
22. Sammis, C. G., Smith, J. C. and Schubert, G., J. Geophys. Res. 86, p. 10, 707 (1981).Google Scholar
23. Weertman, J., Rev. Geophys. Space Phys. 8, p. 145 (1970).Google Scholar
24. Ross, J. V., Avé Lallemant, H. G. and Carter, N. L., Science 203, 261 (1979).Google Scholar
25. Green, H. W. II, and Borch, R. S., Acta Metall. 35, p. 1301 (1987).Google Scholar
26. Kohlstedt, D. L., Evans, B. and Mackwell, S. J., J. Geophys. Res. 100, p. 17, 587 (1995).Google Scholar
27. Dupas, C. et al., Phys. Chem. Minerai., in press.Google Scholar
28. Vaughan, P. J. and Coe, R. S., J. Geophys. Res. 86, p. 389 (1981).Google Scholar
29. Green, H. W. and Burnley, P., Nature 341, p. 733 (1989).Google Scholar
30. Ashby, M. F. and Verrall, R. A, Acta Metall. 21, p. 149 (1973).Google Scholar
31. Riedel, M. R. and Karato, S., Earth Planet Sci. Lett. 148, p. 27 (1997).Google Scholar
32. Jaoul, O., Houlier, B. and Abel, F., J. Geophys. Res. p. 613 (1983).Google Scholar
33. Yamazaki, D. et al., submitted to Science.Google Scholar
34. Borch, R. S. and Green, H. W. II, Nature 330, p. 345 (1987).Google Scholar
35. Takahashi, E. and Kushiro, I., Amer. Mineral. 68, p. 859 (1983).Google Scholar
36. Karato, S., Phys. Earth Planet. Inter. 24, p. 1 (1981).Google Scholar
37. Poirier, J-P. and Liebermann, R. C, Phys. Earth Planet. Inter. 35, p. 283 (1984).Google Scholar
38. Keyes, R. W., in Solids Under High Pressures, edited by Paul, W. and Warschauer, D. M. (McGraw-Hill, New York, 1963), p. 7199.Google Scholar
39. Karato, S., Phys. Earth Planet. Inter. 25, p. 38 (1981).Google Scholar
40. Zerr, A. and Boehler, R., Science 262, p. 553 (1993).Google Scholar
41. Hemley, R. J. and Cohen, R. E., Phil. Trans. Roy. Soc. Lond, A354, p. 1461 (1996).Google Scholar
42. Karato, S., Zhang, S. and Wenk, H-R., Science 270, p. 458 (1995).Google Scholar
43. Wentzcovitch, R. M. et al., submitted to Phys. Earth Planet. Inter.Google Scholar
44. Mitrovica, J. X. and Forte, A. M., J. Geophys. Res. 102, p. 2751 (1997).Google Scholar
45. Tozer, D. C, Phys. Earth Planet. Inter. 6, p. 182 (1972).Google Scholar
46. Quareri, F., Yuen, D. A. and Saari, M. R., Geophys. Res. Lett. 13, p. 38 (1986).Google Scholar