Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T04:00:41.793Z Has data issue: false hasContentIssue false

Effects of Spacer Thickness on the Performance of InGaAs/GaAs Quantum Dot Lasers

Published online by Cambridge University Press:  17 March 2011

Nien-Tze Yeh
Affiliation:
Department of Electrical Engineering, National Central University Chung-Li, Taiwan 32054, R.O.C.
Wei-Shen Liu
Affiliation:
Department of Electrical Engineering, National Central University Chung-Li, Taiwan 32054, R.O.C.
Shu-Han Chen
Affiliation:
Department of Electrical Engineering, National Central University Chung-Li, Taiwan 32054, R.O.C.
Jen-Inn Chyi
Affiliation:
Department of Electrical Engineering, National Central University Chung-Li, Taiwan 32054, R.O.C.
Get access

Abstract

It is found that the performance of self-assembled In0.5Ga0.5As/GaAs multi-stack quantum dot lasers is sensitive to the GaAs spacer thickness between the dots. Reducing the spacer thickness from 30 nm to 10 nm leads to narrow photoluminescence linewidth, low threshold current, high characteristic temperature and high internal quantum efficiency. This behavior is attributed to inhomogeneous broadening caused by dot size fluctuation related to spacer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arakawa, Y., and Sakaki, H., Appl. Phys. Lett., 40, 3941 (1982).Google Scholar
2. Kirstaedter, N., Ledentsov, N. N., Grundmann, M., Bimberg, D., Ustinov, V. M., Ruvimov, S. S., Maximov, M. V., Kop'ev, P. S., and Alferov, Zh. I., Electron. Lett., 30, 14161417 (1994).Google Scholar
3. Shoji, H., Nakata, Y., Mukai, K., Sugiyama, Y., Sugawara, M., Yokoyama, N., and Ishikawa, H., Electron. Lett., 32, 20232024 (1996).Google Scholar
4. Liu, G. T., Stintz, A., Li, H., Malloy, K. J., and Lester, L. F., Electron. Lett., 35, 11631164 (1999).Google Scholar
5. Maksimov, M. V., Gordeev, N. Yu., Zatsev, S. V., Kop'ev, P. S., Kochnev, I. V., Ledentsov, N. N., Lunev, A. V., Ruvimov, S. S., Sakharov, A. V., Tsatsul'nikov, A. F., Shernyakov, Yu. M., Alferov, Zh. I., and Bimberg, D., Semiconductors, 31, 124126 (1997).Google Scholar
6. Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N. P., Phys. Rev. Lett., 75, 25422545 (1995).Google Scholar
7. Nee, T.-E., Yeh, N.-T., Shiao, P.-W., Chyi, J.-I., and Lee, C. T., Jpn. J. Appl. Phys., 38, 650652 (1999).Google Scholar
8. Chyi, J.-I., Nee, T.-E., Lee, C.-T., Shieh, J.-L., and Pan, J.-W., J. Crystal Growth., 175/176, 777780 (1997).Google Scholar
9. Zhang, Y. W., Xu, S. J., and Chiu, C.-H., Appl. Phys. Lett., 74, 18091811 (1999).Google Scholar
10. Binsma, J.J.M., Thijs, P.J.A., Dongen, T. van, Sander-Jochem, M.J.H., and Slootweg, R.W.M., Sixth International Conference on Indium Phosphide and Related Materials, Netherlands, 1013(1994).Google Scholar
11. Williams, P.J., Robbins, D.J., Cush, R., Scott, M.D., Davies, J.I., Marshall, A.C., Riffat, J., Carter, A.C., Electron. Lett., 24, 859860 (1998).Google Scholar