Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T14:20:30.767Z Has data issue: false hasContentIssue false

Effects of Vacancy-Type Defects on Electrical-Activation of P+ Implanted into Silicon

Published online by Cambridge University Press:  15 February 2011

M. Watanabe
Affiliation:
ULSI Device Development Laboratories. NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229, JAPAN
T. Kitano
Affiliation:
ULSI Device Development Laboratories. NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229, JAPAN
S. Asada
Affiliation:
ULSI Device Development Laboratories. NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229, JAPAN
A. Uedono
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, JAPAN
T. Moriya
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, JAPAN
T. Kawano
Affiliation:
Radioisotope Center, University of Tsukuba, Tsukuba, Ibaraki 305, JAPAN
S. Tanigawa
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, JAPAN
R. Suzuki
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN
T. Ohdaira
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN
T. Mikado
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN
Get access

Abstract

The effects of vacancy-type defects induced by ion implantation on the electricalactivation of implanted phosphorus by rapid thermal annealing (RTA) are investigated using the positron annihilation technique, secondary ion mass spectroscopy (SIMS) and the spreading resistance (SR) method. P÷ ions are implanted into bare Si wafers and into Si through Si02 films at 700 keV with doses of the order of l×1013 cm−2. After implantation, rapid thermal annealing (RTA) is performed at temperatures between 600 and 1100 °C for 20 sec. The result shows that vacancy-type defects compensate the electrical-activation of P implanted into Si and also recoiled- oxygen is affected on the electrical-activation of P. The species of main defects for compensating the electrical-activation is identified as a divacancy (V2) from the lifetime of positrons. Effects of recoiled oxygen on the electricalactivation are attributed to the formation of vacancy-oxygen complexes just below the SiO2/Si interface and a resultant decrease in the diffusion length of vacancy-type defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Miyao, M., Yoshino, N., Tokuyama, T. and Mitsuishi, T., J. Appl. Phys. 49 (1978) 2573.Google Scholar
[2] Fair, R. B. in Rapid Thermal Processing Science and Technology, ed. by Fair, R. B. (Academic Press., 1993) p. 169.Google Scholar
[3] Hirao, T., Fuse, G., Inoue, K., Takayanagi, S., Yaegashi, Y. and Ichikawa, S., J. Appl. Phys., 50 (1979) 5251.Google Scholar
[4] Kogler, R., Wieser, E., Volskow, M. and Otto, G., Nucl. Instrum. & Methods, B19/20 (1987) 516.Google Scholar
[5] Ziegler, J. F., Nucl. Instrum. & Methods, B6 (1985) 270.Google Scholar
[6] Hautojarvi, P. and Vehanen, A., in Positrons in Solids, ed. by Hautojarvi, P. (Springer- Verlag, Berlin, 1979) p. 1.Google Scholar
[7] Schultz, P. J. and Lynn, K. G., Rev. Mod. Phys. 60 (1988) 701.Google Scholar
[8] Uedono, A., Kitano, T., Watanabe, M., Moriya, T., Kawano, T., Tanigawa, S., Suzuki, R., Ohdaira, T. and Mikado, T., Jpn. J. Appl. Phys., 35 (1996) 2000.Google Scholar
[9] Uedono, A., Wei, L., Tanigawa, S., Suzuki, R., Ohgaki, H., Mikado, T., Kametani, H., Akiyama, H., Yamaaguchi, Y. and Koumaru, M., Jpn. J. Appl. Phys., 32 (1993) 3682.Google Scholar
[10] Suzuki, R., Kobayashi, Y., Mikado, T., Ohgaki, H., Chiwaki, M., Yamazaki, T. and Tomimasu, T., Jpn. J. Appl. Phys., 30 (1990) L532. Google Scholar
[11] A.van.Veen, Schut, H., De Vries, J., Hakvoort, R. A. and Ijpma, M. R., AIP Conf. Proc. 218 (1990) 171.Google Scholar
[12] Kirkegaard, P., Eldrup, M., 0. Mogensen, E. and Pedersen, N. J., Comput. Phys. Commun., 23 (1981) 307.Google Scholar
[13] Dannefaer, S., in Defect Control in Semiconductors, ed. by Sumino, K. (Elsevier, North-Holland, 1990) p. 1561.Google Scholar
[14] Uedono, A., Wei, L., Dosho, C., Kondo, H., Tanigawa, S., Sugiura, J., and Ogasawara, M., Jpn. J. Appl. Phys. 30 (1991) 201.Google Scholar
[15] Uedono, A., Wei, L., Dosho, C., Kondo, H., Tanigawa, S. and Tamura, M., Jpn, J. Appl..Phys. 30 (1991) 1597.Google Scholar
[16] Fair, R. B. and Tsai, J. C. C., J. Electrochem. Soc., 124 (1977) 1107 Google Scholar