Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-15T20:31:30.824Z Has data issue: false hasContentIssue false

Efficient Visible Room Temperature Photoluminescence in Wide Gap Hydrogenated Amorphous Silicon-Carbon Alloys

Published online by Cambridge University Press:  16 February 2011

Leandro R. Tessler
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau, Cedex, France
Ionel Solomon
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau, Cedex, France
Get access

Abstract

We report a photoluminescence study on amorphous hydrogenated silicon carbon (a-Si1-xCx:H) alloys with carbon concentration in the range O < x < 0.5, prepared by PECVD in the “low-power” regime, that preserves the tetrahedral coordination of the carbon atoms. These samples have optical gaps higher than conventional “high power” alloys with the same carbon content. For carbon concentrations below x = 0.2 the photoluminescence behaves essentially as in pure a-Si:H with increased gap, Urbach energy and DOS. For higher carbon concentrations there is a change in the recombination process, that we attribute to a change in the dominating diffusion process of the photogenerated carriers. The integrated photoluminescence intensity for carbon-rich samples is very weakly dependent on the temperature, and at room temperature it approaches that of pure a-Si:H at 77K. For all samples, the photoluminescence bandwidth can be well described by a zero-phonon model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bullot, J. and Schmidt, M. P., Phys. Stat. Sol. B 143, 345 (1989).CrossRefGoogle Scholar
2. Tawada, Y., Tsuge, K., Kondo, M., Okamoto, H. and Hamakawa, Y., J. Appl. Phys. 53, 5273 (1982).CrossRefGoogle Scholar
3. Hamakawa, Y., Kruangam, D., Deguchi, M., Hattori, Y., Toyama, T. and Okamoto, H., Appl. Surf. Sci. 33–34, 1142 (1988).CrossRefGoogle Scholar
4. Robertson, J., Phil. Mag. B 66, 615 (1992).CrossRefGoogle Scholar
5. Solomon, I., Schmidt, M. P. and Tran-Quoc, H., Phys. Rev. B 38, 9895 (1988);CrossRefGoogle Scholar
Solomon, I. and Tessler, L. R., these Proceedings.Google Scholar
6. Jackson, W. B. and Nemanich, R. J., J. Non-Cryst. Sol. 59&60, 353 (1983).CrossRefGoogle Scholar
7. Street, R. A., Hydrogenated AMorphous Silicon, (Cambridge University Press, Cambridge, 1991).CrossRefGoogle Scholar
8. Collins, R. W., Paesler, M. A. and Paul, W., Sol. Stat. Comm. 34, 833 (1980).CrossRefGoogle Scholar
9. Dunstan, D. J. and Boulitrop, F., Phys. Rev. B 28, 5923 (1983); 30, 5945 (1984).CrossRefGoogle Scholar
10. Street, R. A., Knights, J. C. and Biegelsen, D. K., Phys. Rev. B 18, 1880 (1978).CrossRefGoogle Scholar
11. Liedke, S., Lips, K., Bort, M., Kahn, J. and Fuhs, W., J. Non-Cryst. Sol. 114, 522 (1989).CrossRefGoogle Scholar
12. Mott, N. F. and Davis, E. A., Electronic Processes in Non-Crystalline Materials, 2nd Ed. (Clarendon, Oxford, 1979).Google Scholar
13. Searle, T. M. and Jackson, W. A., Phil. Mag. B 60, 237 (1989).CrossRefGoogle Scholar
14. de Magalhães, C. S., Bittencourt, C., Tessler, L. R. and Alvarez, F., J. Non-Cryst. Sol. 164–166, 1027 (1993).CrossRefGoogle Scholar