Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-22T03:32:57.032Z Has data issue: false hasContentIssue false

Elastic Instabilities and Amorphization of Crystalline Silica Under Pressure

Published online by Cambridge University Press:  01 January 1992

James R. Chelikowsky
Affiliation:
Department of Chemical Engineering and Materials Science, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455
Nadia Binggeli
Affiliation:
Department of Chemical Engineering and Materials Science, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Solid state amorphization can occur when a crystalline phase is compressed at a sufficiently low temperature to inhibit kinetically the transformation to a stable high pressure crystalline phase. An example of such a vitrification transformation occurs in α-quartz, the most stable phase of SiO2 at standard temperature and pressure conditions. Under pressure at room temperature α-quartz gradually transforms to an amorphous form in the range of 25-30 GPa. The driving force for this amorphization is not clear, and speculation has centered on mechanical instabilities of the quartz crystal under pressure. The elastic properties of α-quartz are studied as a function of pressure using both classical interatomic potentials, and ab initio pseudopotentials. In both cases, we find that the α-quartz structure becomes mechanically unstable at about 30GPa. This finding supports a picture in which the amorphization of quartz is triggered by the onset of a lattice shear-instability. The microscopic origin of this elastic softening is intimately related to the presence of an oxygen close-packed cubic arrangement in the quartz high pressure structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hemley, R.J., Jepcoat, A.P., Mao, H.K., Ming, L.C., and Manghnani, M.H., Nature 334, 32 (1988).Google Scholar
2. Kingman, K., Meade, C., Hemley, R.J., Mao, H.K. and Veblen, D.R., to be published.Google Scholar
3. McNeil, L.E. and Grimsditch, M., Phys. Rev. Lett. 68, 83 (1992).Google Scholar
4. Cohen, M.L. in Electronic Materials: A New Era in Materials Science, Chelikowsky, J.R. and Franciosi, A., editors, Springer-Verlag, Solid State Science Series, Vol. 95.Google Scholar
5. Chelikowsky, J.R. and Cohen, M.L., “Ab initio Pseudopotentials for Semiconductors, ” Handbook on Semiconductors, Landsberg, P., editor, 2nd Edition, Elsevier, 1993 (in press).Google Scholar
6. Kruger, M.B. and Jeanloz, R., Science 249, 647 (1990) and references therein.Google Scholar
7. Wolf, G.H., Wang, S., Herbst, C.A., Durben, D.J., Oliver, W.F., and Halvorson, K., to be published.Google Scholar
8. Tse, J.S. and Klug, D.D., Phys. Rev. Lett. 67, 3559 (1991) and references therein.Google Scholar
9. Mishima, O., Calvert, L.D., and Whalley, E., Nature 310, 393 (1984).Google Scholar
10. Ihm, J., Zunger, A., and Cohen, M.L., J. Phys. C 12, 4409 (1979); ibid 13, 3095 (1980).Google Scholar
11. Chelikowsky, J.R., Troullier, N., Martins, J.L., and King, H.E. Jr., Phys. Rev. B 44, 489 (1991); Binggeli, N., Troullier, N., Martins, J.L., and Chelikowsky, J.R., Phys. Rev. B 44, 4771 (1991) and Binggeli, N. and Chelikowsky, J.R., Phys. Rev. Lett. 69, 2220 (1992).Google Scholar
12. Ceperly, D.M. and Adler, B.J., Phys. Rev. Lett. 45, 566 (1980)Google Scholar
13. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
14. Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991).Google Scholar
15. Tsuneyuki, S., Matsui, Y., Aoki, H. and Tsukada, M., Nature 339, 209 (1989).Google Scholar
16. van Beest, B.W.H., Kramer, G.J. and van Santen, R.A., Phys. Rev. Lett. 64, 1955 (1990).Google Scholar
17. Birch, F., J. Geophys. Res. 57, 227 (1952).Google Scholar
18. Keskar, N. and Chelikowsky, J.R., Phys. Rev. B 46, 1 (1992).Google Scholar
19. Cohen, R.E., Am. Mineral. 76, 733 (1991).Google Scholar
20. Levien, L., Prewitt, C.T., and Weidner, D.J., Am. Mineral. 65, 920 (1980).Google Scholar
21. Bass, J.D., Liebermann, R.C., Weidner, D.J., and Finch, S.J., Phys. Earth Planet Interiors, 25, 140 (1981).Google Scholar
22. Wyckoff, R.W.G., Crystal Structures, Interscience, New York, 1974, 4th edition. Google Scholar
23. Zubov, V.G. and Firsova, M.M., Kristallographia 1, 546 (1956).Google Scholar
24. Ross, N.L., Shu, J., Hazen, R.M., and Gasparik, T., Amer. Mineral. 75, 739 (1990).Google Scholar
25. Sugiyama, M., Endo, S. and Koto, K., Mineral. J. 13, 455 (1987).Google Scholar
26. Sowa, H., Z. für Kristallogr. 184, 257 (1988).Google Scholar
27. Glinnemann, J., King, H.E. Jr., Schulz, H., Hahn, Th., LaPlaca, S.J., and Dacol, F., Z. für Kristallogr. 198, 177 (1992).Google Scholar
28. Geisinger, K.L., Gibbs, G.V., and Navrotsky, A., Phys. Chem. Minerals 11, 266 (1985).Google Scholar
29. Zemann, J., Z. für Kristallogr. 175, 299 (1986).Google Scholar
30. Barron, T.H.K and Klein, M.L., Proc. Roy. Soc. 85, 523 (1965).Google Scholar
31.We use the notation: ϵ1 = ϵ xx, ϵ 2 = ϵ yy, ϵ 3 = ϵ zz, ϵ4 = 2ϵ yz, ϵ5 = 2ϵ zx, and ϵ 6 = 2ϵ xy.Google Scholar
32. Smagin, A.G. and Mil'shtein, B.G., Soviet Physics Crystallogr. 19, 514 (1975).Google Scholar
33. Binggeli, N. and Chelikowsky, J.R., Nature 353, 344 (1991).Google Scholar
34. Itie, J.P., Polian, A., Calas, G., Petiau, J., Fontaine, A., and Tolentino, H., Phys. Rev. Lett. 63, 398 (1989); Tsuchida, Y. and Yagi, T., Nature 347, 267 (1990).Google Scholar
35. Binggeli, N., Wentzcovitch, R., and Chelikowsky, J.R., to be published.Google Scholar