Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T15:32:07.160Z Has data issue: false hasContentIssue false

Electrical and Chemical Characterization of SiO2 Deposited by Electron Cyclotron Resonance - PECVD.

Published online by Cambridge University Press:  25 February 2011

R.G. Andosca
Affiliation:
Department of Electrical Engineering, University of Vermont, Burlington, Vermont, 05405
W.J. Varhue
Affiliation:
Department of Electrical Engineering, University of Vermont, Burlington, Vermont, 05405
S. Titcomb
Affiliation:
Department of Electrical Engineering, University of Vermont, Burlington, Vermont, 05405
Get access

Abstract

Thin films of silicon dioxide were deposited on (100) Si at low temperatures (room temperature to 375 °C). Oxygen was introduced into the resonance chamber while a dilute silane gas mixture (2% in helium) was fed to a gas ring supported 10 cm above the wafer. Index of refraction, deposition rates, etch rates (for buffered HF), dielectric constant, and oxide breakdown strength were determined as a function of substrate temperature and RF substrate bias. Hydrogen content and Si-O bonding were measured by FTIR spectroscopy. All properties are reported in terms relative to thermally grown oxide.

Film properties improved with increasing substrate temperature and RF substrate bias, sometimes equaling that of thermal oxide. Film quality was the highest for samples deposited at 375 °C, with an applied RF substrate bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fitch, J.T., Kim, S.S., and Lucovsky, G., J.Vac. Si. Technol., A 8 (3), 18711877, (1990).Google Scholar
2. Adams, A.C., Alexander, F.B., Capio, C.D., and Smith, T.E., J. Electrochem. Soc.: SolidState Sci. and Technol., vol. 128, no. 7, 15451551, (1981).Google Scholar
3. Crowell, I.E., Tedder, L.L., Cho, H., and Cascarano, F.M., J. Vac. Sci. Technol., 8 (3),18641870, (1990).Google Scholar
4. Riley, P.E., Kulkami, V.D., and Castel, E.D., J. Vac. Sci. Technol., B 7 (2), 229232, (1990).Google Scholar
5. Inoue, K., Nakatani, Y., Okuyama, M., and Hamakawa, Y., J. Appl. Phys., 64 (11), 64966501, (1988).Google Scholar
6. Meiners, L.G., J. Vac Sci. Technol., 21 (2), 655658, (1982).Google Scholar
7. Kaganowicz, G., Ban, V.S., and Robinson, J.W., J. Vac.Sc.Technol., A2(3),12331237, (1984).Google Scholar
8. Lucovsky, G., Richard, P.D., Tsu, D.V., Lin, S.Y., and Markunas, R.J., J. Vac. Sci. Technol., A 4 (3), 681688, (1986).Google Scholar
9. Pai, P.G., Chao, S.S., Takagi, Y., and Lucovsky, G., J.Vac Sci.Technol., A4(3), 689694, (1986).Google Scholar
10. Lucovsky, G., and Manitini, M.J., J. Vac. Sci. Technol., B 5 (2), 530537, (1987).Google Scholar
11. Lucovsky, G., Fitch, J.T., Tsu, D.V., and Kim, S.S., J. Vac. Sci. Teclnol., A 7 (3), 11361144, (1989).Google Scholar
12. Tsu, D.V., Parsons, N., Lucovsky, G., and Watkins, M.W., J. Vac. Sci. Technol., A 7 (3), 11151123, (1989).Google Scholar
13. Nguyen, S.V., Dobuzinsky, D., Dopp, D., Gleason, R., Gibson, M., Fridmann, S., IBM Report No. TR 19.90517, 1990.Google Scholar
14. Kim, S.S., Stephens, D.J., and Lucovsky, G., J. Vac.Sci.Technol., A 8 (3), 20392045, (1990).Google Scholar
15. Lucovsky, G., Kim, S.S., Fitch, J.T., J. Vac. Sc!. Technol., B 8 (4), 822831, (1990).Google Scholar
16. Matsuo, S., and Kiuchi, M., Jap. Journ. Appl. Phys., Vol. 22, No. 4, L210–L212, (1983).Google Scholar
17. Ino, Y., Sasaki, M., and Numajiri, K., Monthly Semiconductor World, January, 1985.Google Scholar
18. Machida, K., and Oikawa, H., J. Vac. Sci. Technol., B 4 (4), 818821, (1986).Google Scholar
19. Nguyen, S.V., and Albaugh, K., presented at the 174th Meeting of the Electrochemical Society, Chicago, Illinios, October 9-14, 1988 (unpublished.)Google Scholar
20. Popov, O.A. and Waldron, H., J. Vac. Sc!. Technol., A 7 (3), 914917, (1989).Google Scholar
21. Herak, T.V., Chau, T.T., Thomson, D.J., Mejia, S.R., Buchanan, D.A., and Kao, K.C., J. Appl. Phys., 65 (6), 24572463, (1989).Google Scholar