Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T12:40:56.276Z Has data issue: false hasContentIssue false

Electrical Properties of Beta-Irondisilicide/Germanium Heterojunctions

Published online by Cambridge University Press:  01 February 2011

Takashi Ehara
Affiliation:
Shinmito, Minamisakai, Ishinomaki, Miyagi 986-8580, Japan
Yoshihiro Kokubun
Affiliation:
School of Science and Engineering, Ishinomaki Senshu University
Get access

Abstract

The electrical properties of heterojunctions composed of polycrystalline films of beta-irondisilicide and n-type germanium substrate are investigated. The heterojunctions have been prepared by co-sputtering of iron and silicon on germanium substrate followed by thermal annealing. The samples were prepared over various annealing temperature and chemical compositions. Most of the samples showed rectifying characteristics in current-voltage characteristics measurement. However, large backward leakage current was observed. The result is consistent with that in the case of beta-irondisilicide/silicon heterojunctions. In addition, the leak current showed significant dependence on annealing condition and chemical composition. It was suggested that the high density of trap levels existing at the interface caused by diffusion of Fe into substrate induce the inadequate electrical properties of the samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bost, M. C. and Mahan, J. E., J. Vac. Sci. Technol. B 4, 1336 (1986)Google Scholar
2 Bost, M. C. and Mahan, J. E., J. Appl. Phys., 58, 2696 (1985)Google Scholar
3 Giannini, C., S, Lagomarsino, Scarinci, F. and Castrucci, P., Phys. Rev. B 45, 8822 (1992)Google Scholar
4 Leong, D., Harry, M., Reeson, K. J. and Homewood, K. P., Nature, 387, 686 (1997)Google Scholar
5 Zheng, B., Michel, J., Ren, F. Y. G. and Kimerling, L. C., Appl. Phys. Lett., 64, 2842 (1994)Google Scholar
6 Suemasu, T., Negishi, Y., Takakura, K. and Hasegawa, F., Jpn. J. Appl. Phys., 39, L1013 (2000).Google Scholar
7 Yang, Z., Homewood, K., Finney, M. S., Harry, M. A. and Reeson, K. L., J. Appl. Phys., 78, 1958 (1995)Google Scholar
8 Powalla, M. and Herz, K., Appl. Surf. Phys., 65/66, 482 (1993)Google Scholar
9 Dimitriadis, C. A., J. Appl. Phys., 70, 5423 (1991)Google Scholar
10 Erlesand, U. and Oestling, M., Solid State Electron, 38, 1143 (1995)Google Scholar
11 Okajima, K., Wen, C., Ihara, M., Sakata, I. and Yamada, K., Jpn. J. Appl. Phys., 38, 781 (1999)Google Scholar
12 Komabayashi, M., Hijikata, K. and Ido, S., Jpn. J. Appl. Phys. 29, 1118 (1990)Google Scholar
13 Ehara, T., Sasaki, Y., Saito, K., Nakagomi, S. and Kokubun, Y., Appl. Surf. Phys., 175/176, 175 (2001)Google Scholar
14 Kaenel, H. von, Maeder, K. A., Onda, N. and Sirringhaus, H., Phys. Rev. B, 45, 13807 (1992)Google Scholar
15 Liu, Z., Okoshi, M. and Hanabusa, M., J. Vac. Sci. Technol. A, 17, 619 (1999)Google Scholar