Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T21:45:37.271Z Has data issue: false hasContentIssue false

Electrical Properties of Homoepitaxial Diamond Films

Published online by Cambridge University Press:  26 February 2011

G. Sh. Gildenblat
Affiliation:
Center for Electronic Materials and Processing and Department of Electrical Engineering
S. A. Grot
Affiliation:
Center for Electronic Materials and Processing and Department of Electrical Engineering
C. W. Hatfield
Affiliation:
Center for Electronic Materials and Processing and Department of Electrical Engineering
C. R. Wronski
Affiliation:
Center for Electronic Materials and Processing and Department of Electrical Engineering Materials Research Laboratory Department of Engineering Science and Mechanics The Penn State University, University Park, PA 16802
A. R. Badzian
Affiliation:
Materials Research Laboratory
T. Badzian
Affiliation:
Materials Research Laboratory
R. Messier
Affiliation:
Materials Research Laboratory Department of Engineering Science and Mechanics The Penn State University, University Park, PA 16802
Get access

Abstract

We describe the electrical characteristics of boron doped homoepitaxial diamond films fabricated using a plasma assisted CVD process, formation of ohmic contacts, high temperature (580°C) Schottky diodes, and a rudimentary diamond MESFET. We also report reversible changes of the conductive state of the diamond surface by various surface treatments for both natural and thin-film diamonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoder, M.N., Nav. Res. Rev. 39, 27 (1987).Google Scholar
2. Prins, J.F., Appl. Phys. Lett. 41, 950 (1982).Google Scholar
3. Geis, M.W., Rathman, D.D., Ehrlich, D.J., Murphy, R.A., and Lindley, W.T., IEEE Electron Device Lett. EDL–8, 341 (1987).Google Scholar
4. Tzeng, Y., Lin, T.H., Davidson, J.L., and Lau, L.S., Proc. 7th Biennial University/Government/Industry Microelectronics Symp., Rochester, NY, 1987.Google Scholar
5. Gildenblat, G.Sh., Grot, S.A., Wronski, C.R., Badzian, A.R., Badzian, T., and Messier, R., Appl. Phys. Lett. 53, 586 (1988).Google Scholar
6. Hicks, M.C., Wronski, C.R., Grot, S.A., Gildenblat, G.Sh., Badzian, A.R., Badzian, T., and Messier, R., J. Appl. Phys. 65, 2139 (1989).Google Scholar
7. Geis, M.W., Rathman, D.D., Zayhowski, J.J., Smyth, D., Smith, D.K., and Ditmer, G.A., 3rd ONR Diamond Technology Initiative Symp. Abs., Crystal City, VA, 115 (1988).Google Scholar
8. Shiomi, H., Nakahata, H., Imai, T., Nishibayashi, Y., and Fujimori, N., Japan. J. Appl. Phys. 28, 758 (1989).Google Scholar
9. Glover, G.H., Solid-St. Electron. 16, 973 (1973).Google Scholar
10. Seal, M., Industrial Diamond Review 29, 408 (1969).Google Scholar
11. Collins, A.T., Lightowlers, E.C., and Williams, A.W.S., Diamond Research, 19 (1970).Google Scholar
12. Moazed, K.L., Nguyen, R., and Zeidler, J.R., IEEE Electron Device Lett. 9, 350 (1988).Google Scholar
13. G.Sh. Gildenblat, Grot, S.A., Hatfield, C.W., Wronski, C.R., Badzian, A.R., Badzian, T., and Messier, R., Mat. Res. Bull. 25 (1990) (in press).Google Scholar
14. Cohen, S.S. and Gildenblat, G.Sh., Metal-Semiconductor Contacts and Devices (Academic Press, Inc., New York, 1986).Google Scholar