Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-22T00:32:35.818Z Has data issue: false hasContentIssue false

Electrical Transport in Ultrathin Films of CoSi2 on Si(111)

Published online by Cambridge University Press:  28 February 2011

J. C. Hensel
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. L. Batstone
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. M. Augustyniak
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. C. Unterwald
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

We have performed electrical transport measurements on ultrathin films of epitaxial CoSi2 on Si(111) with film thickness ranging down to ∼10A. The resistivities exhibit temperature dependences characteristic of a metal and a thickness dependence which rises steeply with decreasing thickness suggestive of a quantum size effect. At the lowest temperatures (≲ 10K) the resistivities of the thinner films increase logarithmically with inverse temperature characteristic of transport in the weak localization regime as has been confirmed by magnetoresistance measurements. Hall effect measurements establish that carrier densities (holes) in the ultrathin films are essentially identical to those in bulk CoSi2, i.e. 26 × 1022 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rosencher, E., Delage, S., Campidelli, Y., and Arnaud d'Avitaya, F., Electron. Lett. 20, 762 (1984);Google Scholar
1a. Rosencher, E., Badoz, P. A., Pfister, J. C., Arnaud d'Avitaya, F., Vincent, G., and Delage, S., Appl. Phys. Lett. 49, 271 (1986).Google Scholar
2. Hensel, J. C., Levi, A. F. J., Tung, R. T., and Gibson, W. M., Appl. Phys. Lett. 47, 151 (1985);Google Scholar
2a. Hensel, J. C., Appl. Phys. Lett. 49, 522 (1986).Google Scholar
3. Hensel, J. C., Mat. Res. Soc. Symp. Proc. 54, 499 (1986).Google Scholar
4. Batstone, J. L., Phillips, Julia M., and Gibson, J. M., Mat. Res. Soc. Symp. Proc. (this volume).Google Scholar
5. See, for example, Fig. 2 of ref. 3.Google Scholar
6. Hensel, J. C., Tung, R. T., Poate, J. M., and Unterwald, F. C., Phys. Rev. Lett. 54, 1840 (1985).Google Scholar
7. Fuchs, K., Proc. Cambridge Philos. Soc. 34, 100 (1938);Google Scholar
7a. Sondheimer, E. H., Adv. Phys. 1, 1 (1952).Google Scholar
8. Tesanović, Z., Jarić, M. V., and Maekawa, S., Phys. Rev. Lett. 57, 2760 (1986).Google Scholar
9. Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V., Phys. Rev. Lett. 42, 673 (1979);Google Scholar
9a. Anderson, P. W., Abrahams, E., and Ramakrishnan, T. V., Phys. Rev. Lett. 43, 718 (1979).Google Scholar
10. Altshuler, B. L., Aronov, A. G., and Lee, P. A., Phys., Rev. Lett. 44, 1288 (1980).Google Scholar
11. Hikami, S., Larkin, A. T., and Nagaoka, Y., Prog. Theor. Phys. 36, 707 (1980).Google Scholar