Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-10T05:48:03.870Z Has data issue: false hasContentIssue false

Electroluminescence from Cu(In,Ga)Se2 Thin-film Solar Cells

Published online by Cambridge University Press:  01 February 2011

Thomas Kirchartz
Affiliation:
thomas.kirchartz@ipe.uni-stuttgart.de, University of Stuttgart, Institut for Physical Electronics, Pfaffenwaldring 47, Stuttgart, 70569, Germany
Julian Mattheis
Affiliation:
j.mattheis@q-cells.com, Q-Cells AG, Guardianstraße 16, Thalheim, 06766, Germany
Uwe Rau
Affiliation:
u.rau@fz-juelich.de, Forschungszentrum Jülich, IEF-5, Photovoltaik, Jülich, 52428, Germany
Get access

Abstract

We compare the electroluminescence (EL) of three polycrystalline ZnO/CdS/Cu(In,Ga)Se2 heterojunction solar cells with similar bandgaps but different open circuit voltages, indicating a difference in the electronic quality of the absorber. Temperature dependent electroluminescence measurements reveal that all cells feature transitions from donor-acceptor pair recombination at lower temperatures to band to band recombination at higher temperatures. However, the less efficient cells show a longer transition range with donor-acceptor pair recombination still apparent at room temperature. The thus broadened room temperature luminescence is one effect which reduces the open circuit voltage of the devices below the Shockley-Queisser-limit. The other effect is the existence of non-radiative recombination currents, which determine the efficiency of the device as light emitting diode. To quantify the open circuit voltage losses, we use reciprocity relations between electroluminescent and photovoltaic action of solar cells, which allow us to predict the light emitting diode efficiency. Measurements support the theory and show that Cu(In,Ga)Se2 solar cells reach external LED efficiencies approaching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rau, U., submitted to Phys. Rev. B. Google Scholar
2. Kirchartz, T., Rau, U., Kurth, M., Mattheis, J., and Werner, J. H., Thin Solid Films 515, 2386 (2007).Google Scholar
3. Gabor, A. M., Tuttle, J. R., Albin, D. S., Contreras, M. A., Noufi, R., and Hermann, A. M., Appl. Phys. Lett. 65, 198 (1994).Google Scholar
4. Jackson, P., Würz, R., Rau, U., Mattheis, J., Kurth, M., Schlötzer, T., Bilger, G., Werner, J. H., Progr. Photov.: Res. Appl. (2007, in print) DOI: 10.1002/pip.757.Google Scholar
5. Shklovskii, B. J. and Efros, A. L., Electronic Properties of Doped Semiconductors, Springer, Berlin, 1984.Google Scholar
6. Dirnstorfer, I., Wagner, Mt., Hoffmann, D. M., Lampert, M. D., Karg, F., and Meyer, B. K., phys. stat. sol. (a)168, 163 (1998).Google Scholar
7. Bauknecht, A., Siebentritt, S., Albert, J., and Lux-Steiner, M. Ch., J. Appl. Phys. 89 4391 (2001).Google Scholar
8. Siebentritt, S., Papathanasiou, N., and Lux-Steiner, M. Ch., Physica B 376-377, 831 (2006).Google Scholar
9. Rau, U. and Werner, J. H., Appl. Phys. Lett. 84, 3735 (2004).Google Scholar
10. Werner, J. H., Mattheis, J., and Rau, U., Thin Solid Films 480-481, 399 (2005).Google Scholar
11. Mattheis, J., Rau, U., Schlenker, T., Bogicevic, M., and Werner, J. H., Mat. Res. Soc. Symp. Proc. 865, F16.4.1 (2005).Google Scholar