Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-22T12:49:08.579Z Has data issue: false hasContentIssue false

Electroluminescent Devices with Nanostructured ZnS:Mn Emission Layer Operated at 20 V0-p

Published online by Cambridge University Press:  14 March 2011

Toshihiko Toyama
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Daisuke Adachi
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Hiroaki Okamoto
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Get access

Abstract

We have developed a new type of a thin-film electroluminescence (TFEL) device with nano- structured (NS)-ZnS:Mn utilizing its enhanced luminescent efficiency due to the quantum confinement (QC) effects. As NS-ZnS:Mn, ZnS:Mn/Si3N4 multilayers with thicknesses of 1.9–3.5 nm for ZnS were prepared by a rf-magnetron sputtering method. From the results of grazing incidence X-ray reflectometry and X-ray diffractmetry, formation of ZnS:Mn nanocrystals in the ZnS layers are confirmed. With a decrease in the ZnS:Mn layer thickness, the photoluminescence (PL) efficiency associated with the Mn2+ transitions is increased, and the PL excitation spectrum is shifted toward higher energies, indicating appearance of the QC effects. As the results of the application of NS-ZnS:Mn to the emission layer of the TFEL device, we have successfully observed reddish-orange emission above the threshold voltage of 12 V0-p, and the maximum luminance is 3.0 cd/m2 operated with the 1-kHz sinusoidal voltage of 20 V0-p.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoffe, A. D., Advances in Physics, 42, 173 (1993) and references therein.Google Scholar
2. Bhargava, R. N., Gallagher, D., Hong, X., and Nurmikko, A., Phys. Rev. Lett. 72, 416 (1994).Google Scholar
3. Ono, Y. A., in Electroluminescent Displays, (World Scientific, Singapore, 1995) p. 3.Google Scholar
4. Bol, A. A., and Meijerink, A., Phys. Rev. B 24, 15997 (1998).Google Scholar
5. Khosravi, A. A., Kundu, M., Jatwa, L., Desphpande, S. K., Bhagwat, U. A., Sastry, M., and Kulkarni, S. K., Appl. Phys. Lett. 67, 2702 (1995).Google Scholar
6. Xu, S. J., Chua, S. J., Liu, B., Gan, L. M., Chew, C. H., and Xu, G. Q., Appl. Phys. Lett. 73, 478 (1998).Google Scholar
7. Huang, J., Yang, Y., Xue, S., Yang, B., Liu, S., and Shen, J., Appl. Phys. Lett. 70, 2335 (1997).Google Scholar
8. Que, W., Zhou, Y., Lam, Y. L., Chan, Y. C., Kam, C. H., Liu, B., Gan, L. M., Chew, C. H., Xu, G. Q., Chua, S. J., Xu, S. J., and Mendis, F. V. C., Appl. Phys. Lett., 73, 2727 (1998).Google Scholar
9. Adachi, D., Toyama, T., and Okamoto, H., submitted for the publication.Google Scholar
10. Nevot, L., Pardo, B., and Corno, J., Revue Phys. Appl. 23, 1675 (1988).Google Scholar
11. JCPDS card, No. 5–0566.Google Scholar
12. Aven, M. and Prenter, J. S., in Physics and Chemistry of II-VI Compounds, (North-Holland, Amsterdam, 1967), p. 471.Google Scholar
13. Marrello, V., and Onton, A., IEEE Trans. Electron Devices 27, 1767 (1980).Google Scholar
14. Goede, O., and Thong, D. D., phys. stat. sol. (b) 124, 343 (1984).Google Scholar
15. Bhise, M. D., Katiyar, M., and Kitai, A. H., J. Appl. Phys. 67, 1492 (1990).Google Scholar
16. Tanabe, Y. and Sugano, S., J. Phys. Soc. Jpn. 9, 753 (1954).Google Scholar
17. Wang, Y. R., and Duke, C. B., Phys. Rev. B 5, 2763 (1987).Google Scholar