Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T04:23:54.503Z Has data issue: false hasContentIssue false

Electron Beam Induced Impurity Electro-Migration in Unintentionally Doped GaN

Published online by Cambridge University Press:  15 February 2011

M. Toth
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia, matthew.phillips@uts.edu.au
K. Fleischer
Affiliation:
On leave from Technical University of Berlin
M. R. Phillips
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia, matthew.phillips@uts.edu.au
Get access

Abstract

Electron beam induced electromigration of ON+ and H+ impurities in unintentionally n-doped GaN was investigated using cathodoluminescence (CL) kinetics profiling, CL imaging of regions pre-irradiated with a stationary electron beam, and wavelength dispersive x-ray spectrometry (WDS). The presented results (i) illustrate induced impurity diffusion in wide bandgap semiconductors, (ii) provide experimental evidence for the (VGa-ON)2- model of yellow luminescence in GaN with low Si content (ii) confirm the roles of 0 in frequently reported bound exciton and donor-acceptor pair emissions and (iv) suggest the involvement of ON+ and hydrogenated gallium vacancies in a blue emission in autodoped GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neugebauer, I. J. and Walle, C. G. Van de, Appl. Phys. Lett. 69 (4), 503 (1996).Google Scholar
2. Cazaux, J., J. Appl. Phys. 59 (5), 1418 (1986).Google Scholar
3. Orton, J. W. and Foxon, C. T., Rep. Prog. Phys. 61, 1 (1998).Google Scholar
4. Leroux, M., Beaumont, B., Grandjean, N., Lorenzini, P., Haffouz, S., Vennegues, P., Massies, J. and Gibart, P., Mat. Sc. & Eng. B 50, 97 (1997).Google Scholar
5. Knobloch, K., Perlin, P., Krüger, J., Weber, E. R., and Kisielowski, C., MRS Internet Journal of Nitride Semiconductor Research 3, 4 (1998).Google Scholar
6. Perlin, P., Suski, T., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J. C., Polian, A. and Moustakas, T. D., Phys. Rev. Lett. 75 (2), 296 (1995).Google Scholar
7. Mattila, T. and Nieminen, R. M., Phys. Rev. B 55 (15), 9571 (1996).Google Scholar
8. Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. Lett. 75 (24), 4452 (1995).Google Scholar
9. Toth, M. and Phillips, M. R., Scanning, (20), 425 (1998).Google Scholar
10. Fleischer, K., Toth, M., Phillips, M. R., Zou, J., Li, G. and Chua, S. J., submitted for publication.Google Scholar
11. Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Romig, A. D. Jr, Lyman, C. E., Fiori, C. and Lifshin, E., Scanning Electron Microscopy and Microanalysis, 2nd ed. (Plenum Press, New York and London, 1992), p. 514.Google Scholar
12. Walle, C. G. Van de, Phys. Rev. B 56 (16), 10020 (1997).Google Scholar
13. Popovici, G., Kim, W., Botchkarev, A., Tang, H. and Morkoc, H., Appl. Phys. Lett. 71 (23), 3385 (1997)Google Scholar