Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T10:27:16.051Z Has data issue: false hasContentIssue false

Electron Paramagnetic Resonance and Photoluminescence Studies of Point Defects in Zinc Germanium Phosphide (ZnGeP2)

Published online by Cambridge University Press:  10 February 2011

S. D. Setzler
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV, 26506
L. E. Halliburton
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV, 26506
N. C. Giles
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV, 26506
P. G. Schunemann
Affiliation:
Sanders, A Lockheed Martin Company, Nashua, NH, 03061
T. M. Pollak
Affiliation:
Sanders, A Lockheed Martin Company, Nashua, NH, 03061
Get access

Abstract

Electron paramagnetic resonance (EPR) has been used to monitor native defects, both acceptors and donors, in ZnGeP2 crystals grown by the horizontal gradient freeze technique. These active centers include singly ionized zinc vacancies (Vzn-), neutral phosphorus vacancies (VP0), and neutral phosphorus antisite defects (PGe0). The concentration of Vzn acceptors correlates with the near-infrared optical absorption present in all ZnGeP2 crystals. A photoluminescence band near 1.4 eV is shown to be polarized and is attributed to donor-acceptor-pair (DAP) recombination. Preliminary time-decay measurements support this assignment. Observation of the EPR spectrum of Mn2+ is also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schunemann, P.G., Drevinsky, P.J., Ohmer, M.C., Mitchel, W.C., and Fernelius, N.C. in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Jacobson, D.C., Luzzi, D.E., Heinz, T.F., and Iwaki, M. (Mater. Res. Soc. Proc. 354, Pittsburgh, PA, 1994) pp. 729734.Google Scholar
2. Schunemann, P.G., Drevinsky, P.J., and Ohmer, M.C. in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Jacobson, D.C., Luzzi, D.E., Heinz, T.F., and Iwaki, M. (Mater. Res. Soc. Proc. 354, Pittsburgh, PA, 1994) pp. 579583.Google Scholar
3. Rakowsky, M.H., Kuhn, W.K., Lauderdale, W.J., Halliburton, L.E., Edwards, G.J., Scripsick, M.P., Schunemann, P.G., Poliak, T.M., Ohmer, M.C., and Hopkins, F.K., Appl. Phys. Lett. 64(13), 16151617(1994).Google Scholar
4. Giles, N.C., Halliburton, L.E., Schunemann, P.G., and Poliak, T.M., Appl. Phys. Lett. 66 (14), 17581760(1995).Google Scholar
5. Kaufmann, U., Schneider, J., and Räuber, A., Appl. Phys. Lett. 29 (5), 312313 (1976).Google Scholar
6. Halliburton, L.E., Edwards, G.J., Scripsick, M.P., Rakowsky, M.P., Schunemann, P.G., and Poliak, T.M., Appl. Phys. Lett. 66 (20), 26702672 (1995).Google Scholar
7. Dietz, N., Tsveybak, I., Ruderman, W., Wood, G., and Bachmann, K.J., Appl. Phys. Lett. 65 (22), 27592761 (1994).Google Scholar
8. McCrae, J.E. Jr, Gregg, M.R., Hengehold, R.L., Yeo, Y.K., Ostdiek, P.H., Ohmer, M.C., Schunemann, P.G., and Poliak, T.M., Appl. Phys. Lett. 64 (23), 31423144 (1994).Google Scholar
9. Baran, N.P., Tychina, I.I., Tregub, I.G., Tkachuk, I.Yu., Chernenko, L.I., and Shcherbyna, I.P., Sov. Phys. Semicond. 9 (12), 1527 (1976).Google Scholar