Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-29T01:19:28.796Z Has data issue: false hasContentIssue false

The Electronic States and Dynamical Properties of Hydrogen Bound to Carbon in Silicon

Published online by Cambridge University Press:  03 September 2012

Yoichi Kamiura
Affiliation:
Faculty of Engineering, Okayama University, Tsushimanaka 3–1–1, Okayama 700, Japan
Fumio Hashimoto
Affiliation:
Faculty of Engineering, Okayama University, Tsushimanaka 3–1–1, Okayama 700, Japan
Minoru Yoneta
Affiliation:
Faculty of Science, Okayama University of Science, Ridaicliou 1–1, Okayama 700, Japan
Get access

Abstract

This paper demonstrates a unique action of hydrogen on defects and impurities in semiconductors. Hydrogen injected into n-type Si by chemical etching or hydrogen plasma not only pas-sivatcs phosphorus but also electrically activates carbon by forming a H-C complex acting as an electron trap E3 (0.15). A model of the structure and electronic state of the H-C complex is proposed on the basis of available experimental data on the properties of the complex. The diffusion coefficient of isolated hydrogen below 300K is evaluated from its diffusion process to phosphorus after the photoinduccd dissociation of the H-C complex. Some differences in hydrogen diffusion between chemically etched and plasma hydrogenated crystals arc discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A 43, 153 (1987).Google Scholar
2. Chevallier, J. and Aucouturier, M., Ann. Rev. Mater. Sci. L8, 219 (1988).Google Scholar
3. Pearton, S. J., Stavola, M., and Corbett, J.W., Mater, Sci. Forum 38–41, 25 (1989).Google Scholar
4. Yoneta, M., Kamiura, Y., and Hashimoto, F., J. Appl. Phys. 70, 1295 (1991).Google Scholar
5. Kamiura, Y., Yoneta, M., and Hashimoto, F., Appl. Phys. Lett. 52, 3165 (1991).CrossRefGoogle Scholar
6. Kiefl, R. F., Celio, M., Estle, T. L., Kreitzman, S. R., Luke, G. M., Riseman, T. M., and Ansaldo, E. J., Phys. Rev. Lett. 60, 224 (1988).Google Scholar
7. Van de Walle, C. G., Physica 170, 21 (1991).Google Scholar
8. Herring, C. and Johnson, N. M., in Hydrogen in Semiconductors, edited by Pankove, J. I. and Johnson, N. M., (Academic, New York, 1991), p. 225.Google Scholar
9. Reiss, H., Fuller, C. S., and Morin, F. J., Bell System Tech. J. 35, 535 (1956).Google Scholar
10. Pearton, S. J., Corbett, J. W., and Borenstein, J. T., Physica B 170, 85 (1991).Google Scholar
11. Tavendale, A. J., Williams, A. A., and Pearton, S. J., Proc. Mater. Res. Soc. Symp. 104, 285 (1988).Google Scholar
12. Seager, C. H. and Anderson, R. A., Appl. Phys. Lett. 53, 1181 (1988).Google Scholar
13. Pearton, S. J., in Defects in Semiconductors, edited by Kimerling, L. C. and Parsey, J. M. Jr, (The Metallurgical Society of American Institute of MMPE, Warrendale, 1985), p. 737.Google Scholar
14. Mogro-Campero, A., Love, R. P., and Schubert, R., J. Electrochem. Soc. 122, 2006 (1985).Google Scholar
15. Hansen, W. L., Pearton, S. J., and Haller, E. E., Appl. Phys. Lett, 44, 606 (1984).CrossRefGoogle Scholar
16. Van Wieringen, A. and Warmoltz, N., Physica 22, 849 (1956).Google Scholar
17. Ichimiya, T. and Fumichi, A., Int. J. Appl. Rad. Isotopes 15, 573 (1968).Google Scholar