Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T12:33:19.323Z Has data issue: false hasContentIssue false

Electronic Structure, Magnetism and Spin-Fluctuations in Fe-As Based Superconductors

Published online by Cambridge University Press:  01 February 2011

David Joseph Singh
Affiliation:
singhdj@ornl.gov, United States
Mao-Hua Du
Affiliation:
mhdu@ornl.gov, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Lijun Zhang
Affiliation:
ljzhang@ornl.gov, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Alaska Subedi
Affiliation:
subediap@ornl.gov, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Jiming An
Affiliation:
anj1@ornl.gov, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Get access

Abstract

The physical properties of the layered iron superconductors and related phases are discussed starting from first principles calculations. The electronic structure is described as that of metallic Fe2+ square lattice sheets with substantial direct Fe-Fe hopping and interactions with the neighboring anionic pnictogens or chalcogens. The materials have a semi-metallic band structure, and in particular the Fermi surface consists of small cylindrical electron sections centered at the zone corner, and compensating hole sections at the zone boundary. The density of states N(EF) is high placing the materials near itinerant magnetism in general, and furthermore the small Fermi surface sections are well nested leading to a tendency towards a spin density wave. Comparison of experimental and density functional results imply the presence of exceptionally strong spin fluctuations in these materials. Superconductivity is discussed within this context.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., and Hosono, H., J. Am. Chem. Soc. 128, 10012 (2006).Google Scholar
2. Kamihara, Y., Watanabe, T., Hirano, M., and Hosono, H., J. Am. Chem. Soc. 130, 3296 (2008).Google Scholar
3. Hsu, F.C.,, Luo, J.Y., Yeh, K., W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C., and Wu, M.K., Proc. Natl. Acad. Sci. (USA) 105, 14262 (2008).Google Scholar
4. Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., and Takano, Y., Appl. Phys. Lett. 93, 152505 (2008).Google Scholar
5. de la Cruz, C., et al., Nature (London) 453, 899 (2008).Google Scholar
6. Rotter, M., Tegel, M., Johrendt, D., Schellenberg, I., Hermes, W., and Pottgen, R., Phys. Rev. B 78, 020503(R) (2008).Google Scholar
7. Mazin, I.I., Johannes, M.D., Boeri, L., Koepernik, K., and Singh, D.J., Phys. Rev. B 78, 085104 (2008).Google Scholar
8. McGuire, M.A., et al., Phys. Rev. B 78, 094517 (2008).Google Scholar
9. Ahilan, K., et al., Phys. Rev. B 78, 100501 (2008).Google Scholar
10. Klingeler, R., et al., arXiv:0808.0708 (2008).Google Scholar
11. Wang, X.F., et al., arXiv:0811.2920 (2008).Google Scholar
12. Fay, D. and Appel, J., Phys. Rev. B 22, 3173 (1980).Google Scholar
13. Mazin, I.I., Singh, D.J., Johannes, M.D., and Du, M.H., Phys. Rev. Lett. 101, 057003 (2008).Google Scholar
14. Kuroki, K., et al., Phys. Rev. Lett. 101, 087004 (2008).Google Scholar
15. Rotter, M., Tegel, M., and Johrendt, D., Phys. Rev. Lett. 101, 106006 (2008).Google Scholar
16. Tapp, J.H., et al., Phys. Rev. B 78, 060505 (2008).Google Scholar
17. Sefat, A.S., et al., Phys. Rev. Lett. 101, 117004 (2008).Google Scholar
18. Watanabe, T., et al., Inorg. Chem. 46, 7719 (2007).Google Scholar
19. Tegel, M., Bichler, D., and Jorendt, D., Solid State Sci. 10, 193 (2008).Google Scholar
20. Boeri, L., Dolgov, O.V., and Golubov, A.A., Phys. Rev. Lett. 101, 026403 (2008).Google Scholar
21. Subedi, A., Singh, D.J., and Du, M.H., Phys. Rev. B 78, 060506 (2008).Google Scholar
22. Subedi, A. and Singh, D.J., Phys. Rev. B 78, 132511 (2008).Google Scholar
23. Singh, D.J. and Du, M.H., Phys. Rev. Lett. 100, 237003 (2008).Google Scholar
24. Kurmaev, E.Z., et al., Phys. Rev. B 78, 220503 (2008).Google Scholar
25. Kroll, T., et al., arXiv:0806.2625 (2008).Google Scholar
26. Lu, D.H., et al., Nature (London) 455, 81 (2008).Google Scholar
27. Singh, D.J., Phys. Rev. B 48, 3571 (1993).Google Scholar
28. Singh, D.J., Physica C 212, 228 (1993).Google Scholar
29. Sefat, A.S., et al., Phys. Rev. B 77, 174503 (2008).Google Scholar
30. Sebastian, S.E., et al., J. Phys. Condens. Matter 20, 422203 (2008).Google Scholar
31. Okada, H., et al., J. Phys. Soc. Japan 77, 113712 (2008).Google Scholar
32. Alireza, P.L., et al., arXiv:0807.1896 (2008).Google Scholar
33. Yin, Z.P., et al., Phys. Rev. Lett. 101, 047101 (2008).Google Scholar
34. Shimizu, M., Rep. Prog. Phys. 44, 329 (1981).Google Scholar
35. Aguayo, A., Mazin, I.I., and Singh, D.J., Phys. Rev. Lett. 92, 147201 (2008).Google Scholar
36. Singh, D.J. and Mazin, I.I., Phys. Rev. B 63, 165101 (2001).Google Scholar
37. Kondo, T., et al., Phys. Rev. Lett. 101, 147003 (2008).Google Scholar
38. Sefat, A.S., et al., Phys. Rev. Lett. 101, 117004 (2008).Google Scholar
39. Pickett, W.E., et al., Science 255, 46 (1992).Google Scholar
40. Aebi, P., et al., Phys. Rev. Lett. 72, 2757 (1994).Google Scholar
41. Singh, D.J. and Pickett, W.E., Phys. Rev. B 51, 3128 (1995).Google Scholar
42. Koitzsch, A., et al., Phys. Rev. B 69, 220505 (2004).Google Scholar
43. Mans, A., et al., Phys. Rev. Lett. 96, 107007 (2006).Google Scholar
44. Nakayama, K., et al., Phys. Rev. B 74, 054505 (2006).Google Scholar