Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T00:10:36.949Z Has data issue: false hasContentIssue false

Electronic Structure of Doped Buckminsterfullerene

Published online by Cambridge University Press:  25 February 2011

Arne RosÉn
Affiliation:
Department of Physics, Chalmers University of Technology and University of GÖteborg, S-412 96 GÖTEBORG, Sweden
Daniel Östling
Affiliation:
Department of Physics, Chalmers University of Technology and University of GÖteborg, S-412 96 GÖTEBORG, Sweden
Get access

Abstract

Molecular cluster calculations within the local density approximation have been performed in a study of the electronic structure of the C60 molecule - “Buckminsterfullerene” doped with K, B and N. Calculations for the KC60 molecule, with the K atom located at the centre of the cage as well as at different positions inside or outside the cage, show how the valence 4s electron is transferred to the LUMO state of the bare C60 molecule. Doping with a B or N atom located at the centre of the cage creates a molecule with a partly occupied level of 2p character in the HOMO and LUMO gap, similar to donor and acceptor levels in the band gap of traditionally doped semiconductors. Doping by substitution of one or two of the carbon atoms in the cage with X = B or N, as modelled with the C59 X1 or C58X2 clusters, gives a different structure with a splitting of the HOMO and LUMO levels in the pure C60 molecule and with the creation of acceptor and donor levels with the substitution of B and N, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Hopkins, J. B., Langridge-Smith, P. R. R., Morse, M. D. and Smalley, R. E., J. Chem. Phys. 78, (1983) 16271637.CrossRefGoogle Scholar
[2]. Jena, P., Rao, B. K., and Kahnna, S.N. Eds. Physics and Chemistry of Small Clusters, Plenum Press, New York, NATO ASI Series Physics Vol. 158 (1987).Google Scholar
[3]. Echt, O. and Recknagel, E., Eds. Small Particles and Inorganic Clusters, Proceedings of the Fifth International Symposium on Small Particles and Iorganic Clusters, ISSPIC 5, Konstanz, Sept 1990. Z Physik D19, 1991.CrossRefGoogle Scholar
[4]. Kroto, H., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318 (1985) 162163.CrossRefGoogle Scholar
[5]. Curl, R. F. and Smalley, R. E., Science, 242, (1988) 10171022.Google Scholar
[6]. Kroto, H. W., Science, 242, (1988) 11391145.CrossRefGoogle Scholar
[7]. Kratschmer, W., Fostiropoulos, K., and Huffman, D.R., Dusty Objects in the Universe, p 89(1988) Eds. Bussoletti, E. and Vittone, A. A., Kluwer Academic Publ. Dordrecht, Boston London.Google Scholar
[8]. Kratschmer, W., Fostiropoulos, K., and Huffman, D.R., Chem. Phys. Lett. 170 (1990) 167170.Google Scholar
[9]. Kratschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D.R., Nature 347 (1990) 354358.Google Scholar
[10]. Materials Research Society Symp. Proc. 206 (1991).Google Scholar
[11]. Fullerenes, Synthesis, Properties and Chemistry of Large Carbon Clusters, Eds. Hammond, G. S. and Kuck, V. J., ACS Symposium Series 481, 1992.Google Scholar
[12]. Advances in the synthesis, characterization and properties of fullerenes, J 0 Physics and Chemistry of Solids, Eds. Fischer, J. E. and Cox, D. E..Google Scholar
[13]. Haddon, R. C., Hebard, A. F., Rosseinsky, M.J., Murphy, D. W., Duclos, S. J., Lyons, K. B., Miller, B., Rosamilla, J. M., Fleming, R. M., Kortan, A. R., Glarum, S. H., Makhija, A. V., Muller, A. J., Elck, R. H., Zahurak, S. M., Tycko, R., Dabbagh, G. and Thiel, A. F., Nature, 350, (1991) 320322.Google Scholar
[14]. Hebard, A. F., Rosseinsky, M. J., Haddon, R. C., Murphy, D. W., Glarum, S. H., Palstra, T. T. M., Ramirez, A. P. and Kortan, A. R., Nature, 350, (1991) 600601.CrossRefGoogle Scholar
[15]. Rosseinsky, M. J., Ramirez, A. P., Glarum, S. H., Murphy, D. W., Haddon, R. C., Hebard, A. F., Palstra, T. T. M., Kortan, A. R., Zahruak, S. M. and Makhija, A. V., Phys. Rev. Lett. 66, (1991) 28302832.CrossRefGoogle Scholar
[16]. Tanigaki, K., Ebbesen, T. W., Saito, S., Mizuki, J., Tsai, J. S., Kubo, Y. and Kuroshima, S., Nature, 352, (1991) 222223.CrossRefGoogle Scholar
[17]. For a recent review see article on “Doping the Fullerenes” by Smalley in chapter 10 in Ref. 11.Google Scholar
[18]. Rohlfing, E. A., Cox, D. M. and Kaldor, A., J. Chem. Phys. 81, (1984) 33223330.CrossRefGoogle Scholar
[19]. Heath, J.R., O'Brien, S.C., Zhang, Q., Liu, Y., Curl, R.F., Kroto, H.W., Tittel, F.K., and Smalley, R.E., J. Am. Chem. Soc. 107 (1985) 77797780.CrossRefGoogle Scholar
[20]. Cox, D.M., Trevor, D.J., Reichmann, K.C., and Kaldor, A., J. Am. Chem. Soc. 108 (1986) 24572458.Google Scholar
[21]. O'Brien, S.C., Heath, J.R., Curl, R.F., and Smalley, R.E., J. Chem. Phys. 88 (1988) 220230.Google Scholar
[22]. Cox, D.M., Reichmann, K.C., and Kaldor, A., J. Chem. Phys. 88 (1988) 15881597.CrossRefGoogle Scholar
[23]. Rosén, A. and Wastberg, B., J. Am Chem. Soc. 110 (1988) 87018703.Google Scholar
[24]. Rosén, A. and Wastberg, B., J. Chem. Phys. 90 (1989) 25252526.CrossRefGoogle Scholar
[25]. Rosén, A. and Wastberg, B., Z. Physik D12, (1991) 387390.Google Scholar
[26]. Johnsson, R. D., Vries, M. S. de, Salem, J. and Yannoni, C. S., Nature 355, (1992) 239240.CrossRefGoogle Scholar
[27]. Cioslowski, J., J. Am Chem. Soc. 113 (1991) 41394141.Google Scholar
[28]. Cioslowski, J. and Fleischmann, E. D., J. Chem. Phys. 94 (1991) 37303734.Google Scholar
[29]. Chang, A. H. H., Ermler, W.C. and Pitzer, R. M., J. Chem. Phys. 94 (1991) 50045010.CrossRefGoogle Scholar
[30]. Saito, S., Materials Research Society Symp. Proc. 206 (1991) 115120.CrossRefGoogle Scholar
[31]. Wastberg, B. and Rosdn, A., Physica Scripta 44 (1991) 276288.CrossRefGoogle Scholar
[32]. Wang, L-S., Chenovsky, O., Carpenter, J. D., Hwu, S-J and Smalley, R. E., J.Chem. Phys. Comm. 96, (1991) 40284031.Google Scholar
[33]. Guo, T., Jin, C. and Smalley, R. E., J. Phys. Chem. 95, (1991) 49484950.CrossRefGoogle Scholar
[34]. Chai, Y., Guo, T., Yin, C., Haufler, R. E., Chibante, L. P. F., Fure, J., Wang, L., Alford, J. M., and Smalley, R. E., J. Phys. Chem. 95, (1991) 75647568.Google Scholar
[35]. Rosén, A. and Wastberg, B., Surface Science, in press.Google Scholar
[36]. Rosén, A., Z. Physik D submitted.Google Scholar
[37]. Andreoni, W., Gygi, F. and Parinello, M., Chem. Phys. Lett. 190 (1992) 159162.Google Scholar
[38]. Hohenberg, P., Phys. Rev. 136, (1964) B864–B871.Google Scholar
[39]. Kohn, W. and Sham, L.J., Phys. Rev. 140, (1965) A1133–A1138.Google Scholar
[40]. Barth, U. von and Hedin, L., J. Phys. C5 (1972) 16291642.Google Scholar
[41]. Ellis, D.E. and Painter, G.S., Phys. Rev. B2, (1970) 28872898.Google Scholar
[42]. Rosén, A., Ellis, D.E., Adachi, H., and Averill, F.W., J. Chem. Phys. 65, (1976) 36293634.CrossRefGoogle Scholar
[43]. Newton, M. D. and Stanton, R. E., J. Am. Chem. Soc. 108, (1988) 24692470.CrossRefGoogle Scholar
[44]. Hedberg, K., Hedberg, L., Bethune, D. S., Brown, C. A., H.C.Dorn, Johnson, R. D. and Vries, M. de, Science, 254, (1991) 410412.Google Scholar