Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T00:03:25.301Z Has data issue: false hasContentIssue false

Electronic Structure of PuCoGa5 and UCoGa5

Published online by Cambridge University Press:  26 February 2011

Eric Bauer
Affiliation:
edbauer@lanl.gov, Los Alamos National Laboratory, Los Alamos National Lab, PO Box 1663, MS K764, Los Alamos, NM, 87545, United States
T. Durakiewicz
Affiliation:
edbauer@lanl.gov, LANL
M. T. Butterfield
Affiliation:
edbauer@lanl.gov, LANL
E. Guziewicz
Affiliation:
edbauer@lanl.gov, Polish Academy of Sciences
J. J. Joyce
Affiliation:
edbuaer@lanl.gov, LANL
C. G. Olson
Affiliation:
edbauer@lanl.gov, Iowa State University, Ames Lab
L. A. Morales
Affiliation:
edbauer@lanl.gov, LANL
J. L. Sarrao
Affiliation:
edbauer@lanl.gov, LANL
J. D. Thompson
Affiliation:
edbauer@lanl.gov, LANL
Get access

Abstract

The electronic structure of the Pu-based superconductor PuCoGa5 and the Pauli paramagnet UCoGa5 is investigated using photoemission spectroscopy. The photoemission data of PuCoGa5 reveal features at the Fermi energy EF and about 1-1.5 eV below EF indicative of itinerant and localized f-electrons, respectively. Angle-resolved spectra of UCoGa5 show two peaks at similar energies that are highly dispersive, providing evidence for itinerant character of the f-electrons in this material. A comparison of the PuCoGa5 and UCoGa5 data to the spectra of α-Pu and δ-Pu serves to place PuCoGa5 within the context of the more general electronic structure problem in elemental Pu.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Albers, R. C., Nature 410, 759 (2001).Google Scholar
[2] Hecker, S.S., Challenges in Plutonium Science, Los Alamos Science, 26, 290 (2000).Google Scholar
[3] e.g., Brooks, M. S. S. in Handbook on the Physics and Chemistry of the Actinides (North-Holland, 1984), Freeman, A. J., Lander, G. H. (Eds.).Google Scholar
[4] Soderlind, P. et al. Phys. Rev. B 55, 1997 (1997).Google Scholar
[5] Eriksson, O. et al. J. Alloys and Comp. 287, 1 (1999).Google Scholar
[6] Soderlind, P. et al. Nature 374, 524 (1995).Google Scholar
[7] Freeman, A. J., Lander, G. H. (Eds.), Handbook on the Physics and Chemistry of the Actinides (North-Holland, 1984).Google Scholar
[8] Soderlind, P. et al. Phys. Rev. B 42, 4544 (1990).Google Scholar
[9] Sarrao, J. L. et al. Nature 420, 297 (2002).Google Scholar
[10] Wastin, F. et al. J. Phys. Condens. Matter 15, S2279 (2003).Google Scholar
[11] Bauer, E. D. et al. Phys. Rev. Lett. 93, 147005 (2004).Google Scholar
[12] Curro, N. J. et al. Nature 434, 622 (2005).Google Scholar
[13] Joyce, J. J. et al. Phys. Rev. Lett. 91, 176401 (2003).Google Scholar
[14] Moreno, N. O. et al. Phys. Rev. B 72, 035119 (2005).Google Scholar
[15] Yeh, J.J. and Lindau, I., Atomic Data and Nuclear Data Tables, 32, 1 (1985).Google Scholar
[16] Wills, J.M. et al. , J. Elect. Spectr. & Related Phenom. 135, 163 (2004).Google Scholar
[17] Arko, A.J. et al. , Phys. Rev. B 62, 1773 (2000).Google Scholar
[18] Joyce, J. J. et al. Mat. Res. Soc. Symp. Proc., 802, 239 (2004).Google Scholar
[19] Booth, C. H. et al. (unpublished).Google Scholar
[20] Tokiwa, Y. et al. J. Nucl. Sci. Technol. 3, 210 (2002).Google Scholar
[21] Butterfield, M. T. et al. (unpublished).Google Scholar
[22] see, for example, Lashley, J. C. et al. , Phys. Rev. B 71, 054416 (2005).Google Scholar
[23] Savrasov, S. Y. et al. Nature 410, 793 (2001).Google Scholar
[24] Maehira, T. et al. Phys. Rev. Lett. 90, 207007 (2003).Google Scholar