Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-15T17:32:04.127Z Has data issue: false hasContentIssue false

Electrophoretic Deposition of CdSe Nanocrystal Films on Conducting Electrodes

Published online by Cambridge University Press:  11 February 2011

Mohammad A. Islam
Affiliation:
Department of Applied Physics and Applied Mathematics
Yuqi Xia
Affiliation:
Department of Physics
Benjamin J. Kraines
Affiliation:
Materials Research Science and Engineering Center, Columbia University, New York, NY 10027, U.S.A.
Irving P. Herman
Affiliation:
Department of Applied Physics and Applied Mathematics
Get access

Abstract

A dc electric field is used to attract thermally charged CdSe nanocrystals in solution to rapidly form large-area, micron-thick films of equal thickness on both electrodes. A pair of Au-on-Si or conducting ITO-on-glass electrodes was submerged in the nanoparticle solution and a dc voltage was applied in a dark room. Uniform, robust, very smooth, and apparently identical films formed on both electrodes. Photoluminescence and absorption of the films showed that they are indeed made of dense arrays of individual nanocrystals. The deposition implies there are both positively and negatively thermally charged dots in solution. These high quality dense arrays of the nanoparticles could be useful in several applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murray, C. B., Kagan, C. R., and Bawendi, M. G., Science 270, 1335 (1995).Google Scholar
Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E., and Heath, J. R., Science 277, 1978 (1997).Google Scholar
Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., Science 287, 1989 (2000).Google Scholar
4. Schlamp, M. C., Peng, X., and Alivisatos, A. P., J. Appl. Phys. 82, 5837 (1997).Google Scholar
5. Michalet, X., Pinaud, F., Lacoste, T. D., Dahan, M., Bruchez, M. P., Alivisatos, A. P., and Weiss, S., Single Molecules 2, 261 (2001).Google Scholar
6. Remacle, F., Collier, C. P., Markovich, G., Heath, J. R., Banin, U., and Levine, R. D., J. Phys. Chem. 102, 7727 (1998).Google Scholar
7. Korgel, B. A. and Fitzmaurice, D., Phys. Rev. Lett. 80, 3531 (1998).Google Scholar
8. Ohara, P. C. and Gelbart, W. M., Langmuir 14, 3418 (1998).Google Scholar
9. Gelbart, M., Sear, R. P., Heath, J. R., and Chaney, S., Faraday Discuss. 112, 299 (1999).Google Scholar
10. Islam, M. A. and Herman, I. P., Appl. Phys. Lett. 80, 3823 (2002).Google Scholar
11. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
12. Groisman, A. and Kaplan, E., Europhys. Lett. 25, 415 (1994).Google Scholar
13. Kagan, C. R., Murray, C. B., Nirmal, M., and Bawendi, M. G., Phys. Rev. Lett. 76, 3403 (1996).Google Scholar
14. Murray, C. B., Ph. D. Thesis, Massachusetts Institute of Technology (1993).Google Scholar
15. Trau, M., Saville, D. A., and Aksay, I. A., Science 272, 706 (1996).Google Scholar
16. Giersig, M. and Mulvaney, P., Langmuir 9, 3409 (1993).Google Scholar
17. Shim, M. and Guyot-Sionnest, P., J. Chem. Phys. 111, 6955 (1999).Google Scholar
18. Sarkar, P. and Nicholson, P. S., J. Am. Chem. Soc. 79, 1987 (1996).Google Scholar
19. Whittle, M., J. Non-Newt. Fl. Mech. 37, 233 (1990).Google Scholar
20. Lee, S., Computers and Fluids 29, 639 (2000).Google Scholar
21. Ginger, D. S. and Greenham, N. C., J. Appl. Phys. 87, 1361 (2002).Google Scholar
22. Morgan, N. Y., Leatherdale, C. A., Drndic, M., Jarosz, M. V., Kastner, M. C., and Bawendi, M. G., Phys. Rev. B 66, 075339 (2002).Google Scholar