Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T02:56:06.977Z Has data issue: false hasContentIssue false

End-Grafted Semiconducting Polymer—Candidate for Molecular Wire

Published online by Cambridge University Press:  21 March 2011

Kazuaki Furukawa
Affiliation:
NTT Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
Keisuke Ebata
Affiliation:
NTT Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
Michiya Fujiki
Affiliation:
NTT Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
Get access

Abstract

We report on polysilane, a synthetically accessible μ-conjugated silicon-catenated polymer with such semiconducting properties as photoconductivity, high hole drift mobility, and electroluminescence, as a candidate for molecular wire. We apply the “end-graft” technique, which we developed for fixing individual polymer chains on a substrate surface, to a semiflexible polysilane. The end-grafted semiflexible polysilane extended more than 500 nm across the Si(111) surface, and was clearly observed by means of atomic force microscopy (AFM).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsumoto, N., Jpn. J. Appl., Phys., 37, 5425 (1998).Google Scholar
2. Fujino, M., Chem. Phys. Lett. 136, 451 (1987).Google Scholar
3. Kepler, R. G., Zeigler, J. M., Harrah, L. A. and Kurtz, S. R., Phys. Rev., B35, 2818 (1987).Google Scholar
4. Stolka, M., Yuh, H. J., McGrane, K. and Pai, D. M., Chem. Phys. Lett., 136, 451 (1987).Google Scholar
5. Abkowitz, M. A., Knier, F. E., Yuh, H. J., Weagley, R. J. and Stolka, M., Solid State Commun., 62, 547 (1987).Google Scholar
6. Yuan, C.-H., Hoshino, S., Toyoda, S., Suzuki, H., Fujiki, M. and Matsumoto, N., Appl. Phys. Lett., 71, 3326 (1997).Google Scholar
7. Suzuki, H., Hoshino, S., Yuan, C.-H., Fujiki, M., Toyoda, S. and Matsumoto, N., IEEE J. Select. Topics Quantum Electron., 4, 129 (1998).Google Scholar
8. Fujiki, M., J. Am.Chem. Soc., 118, 7424 (1996).Google Scholar
9. Ebata, K., Furukawa, K. and Matsumoto, N., J. Am.Chem. Soc., 120, 7367 (1998).Google Scholar
10. Furukawa, K., Ebata, K. and Matsumoto, N., Appl. Phys. Lett., 75, 781 (1999).Google Scholar
11. Higashi, G. S., Chabal, Y. J., Trucks, G. W. and Raghavachari, Krishnan, Appl. Phys. Lett., 56, 656 (1990).Google Scholar
12. Jinbo, Y., Terakawa, I., Sato, S., Teramoto, A. and Fujiki, M., Polym. Prepr. Jpn., 46, 3755 (1997).Google Scholar
13. Hagerman, P. J., Ann. Rev. Biophys. Biophys. Chem., 17, 265 (1988).Google Scholar
14. Ebihara, K., Koshihara, S., Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H. and Fujiki, M., Jpn. J. Appl. Phys., 36, L1211 (1997).Google Scholar