Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T02:14:50.667Z Has data issue: false hasContentIssue false

Energy Transference Effects on the Mechanical Properties of C60 Films Irradiated with N Ions

Published online by Cambridge University Press:  10 February 2011

C. E. Foerster
Affiliation:
Departamento de Física-UEPG, Al. Nabuco de Araújo sn, 84010-330, Ponta Grossa, PR, Brasil
F. C. Serbena
Affiliation:
Departamento de Física-UEPG, Al. Nabuco de Araújo sn, 84010-330, Ponta Grossa, PR, Brasil
J. M. J. Lopes
Affiliation:
Departamento de Física-UEPG, Al. Nabuco de Araújo sn, 84010-330, Ponta Grossa, PR, Brasil
C. M. Lepienski
Affiliation:
Departamento de Física-UFPR, Cx. Postal 19081, 81531-990, Curitiba, PR, Brasil
F. C. Zawislak
Affiliation:
Instituto de Física-UFRGS, Cx. Postal 15051, 91501-970, Porto Alegre, RS, Brasil
Get access

Abstract

The nanoindentation technique was used to determine the hardness and Young's modulus of thin C60 films irradiated with N ions. The pristine film, with thickness of 170 nm, was grown on a Si (111) substrate, with an intermediary layer of SiO2 50nm thick. An X-ray analysis reveals a fcc structure for the pristine C60 films. The N irradiation was performed with energy of 170 keV (Rp of 380nm) and fluences ranging from 5×1011 to 5×1015 ions.cm−2 . The loads used in the nanoindentation tests were from 0.05 to 16 mN in order to obtain information about the film, the interface and the substrate. The hardness and Young's modulus, for the pristine and irradiated films were compared considering normalised values at tip penetrations of 70 nm. For the C60 non-irradiated film, the hardness and the Young's modulus were 0.31 GPa and 23 GPa respectively. After N irradiation at fluences greater than 1013 ions.cm −2, the hardness and Young's modulus changed drastically, rising to 15 GPa and 170 GPa respectively at fluence of 5×1015. These results are discussed in terms of the energy transference mechanisms by the N ions into the C60 film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1- Worth, G. L., Hartley, N. E. W.; Thin Solids Films, 48, 95 (1978).Google Scholar
2- Bhushan, B., Gupta, B. K., Van Cleef, G. W., Capp, C., Coe, J. V.; Appl. Phys. Lett., 25, 3253 (1993).Google Scholar
3- Thundat, T., Warmack, R. J., Ding, D., Compton, R. N.; Appl. Phys. Lett., 63, 891 (1993).Google Scholar
4- Raun, J., Bhushan, B., J. Mater. Res, 8, 3019 (1993).Google Scholar
5- Gupta, B. K., Bhushan, B., Capp, C. Coe, J. V., J. Mater. Res., 9, 2823 (1994).Google Scholar
6- Palmetshofer, L., Kastner, J.; NIMB, 96, 343 (1995).Google Scholar
7- Zawislak, F. C.. Behar, M., Fink, D., Grande, P. L. da, Jornada, J. A. H., Kaschny, J. R., Phys. Lett A, 226, 47 (1997).Google Scholar
8- Ziegler, J. F., Biersack, J. R., Littmark, U.; The Stopping and Ranges of Ions in Solids, Pergamom Press, NY, 1978.Google Scholar
9- Oliver, W. C., Pharr, G. M.; J. Mater. Res., 7, 1564 (1992).Google Scholar
10- Zawislak., F. C., Behar, M., Fink, D., Grande, P. L. da, Jornada, J. A. H.; Submitted to NIMB.Google Scholar
11- Lee, E. H., Rao, G. R., Lewis, M. B., Mansur, I. k.; J. Mater. Res., 9, 043 (1994).Google Scholar
12- Lee, E. H., Lewis, M. B., Blau, P. J., Mansur, L. K.; J. Mater. Res., 6, 610 (1991).Google Scholar
13- Rao, G. R., Lee, G. R., Battacharya, R., McCornick, A. W.; J. Mater. Res., 10, 190 (1995).Google Scholar
14- Ion Irradiation Hardening of C60 Thin films. - Foerster, C. E.., Lepienski, C. M., Serbena, F. C., Zawislak, F. C., submitted to Adv. Mat.Google Scholar
15- Mclulloch, D., Hoffman, A., Praver, S., J. Appl. Phys., 74, 135 (1993).Google Scholar