Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-31T16:11:18.491Z Has data issue: false hasContentIssue false

Enhanced Boron Diffusion in Silicon with BF2-Implanted CoSi2 AS Diffusion Source and Under Rapid Thermal Annealing

Published online by Cambridge University Press:  21 February 2011

J. Lin
Affiliation:
Microelectronics Research Center, University of Texas, Austin, TX 78712
W. Chen
Affiliation:
Microelectronics Research Center, University of Texas, Austin, TX 78712
A. Sultan
Affiliation:
Microelectronics Research Center, University of Texas, Austin, TX 78712
S. Banerjee
Affiliation:
Microelectronics Research Center, University of Texas, Austin, TX 78712
J. Lee
Affiliation:
Microelectronics Research Center, University of Texas, Austin, TX 78712
Get access

Abstract

In this paper, B diffusion in Si with BF2-implanted CoSi2 as a diffusion source has been studied using SIMS analysis. The concentration-dependent diffusivity of B in single crystal Si is obtained by Boltzmann-Matano analysis. The data show that the B diffusivity in single crystal Si is more than one order of magnitude higher than the published data where a conventional B diffusion source (BN or B2H2) is used. Anomalous concentration dependence of the B diffusivity in Si for ultra-shallow B SIMS profiles was also observed. Possible physical mechanisms which involve implant damage in the Si substrate, the generation of point defects such as Si vacancies and interstitials during silicide formation, and B-defect interactions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, D. C., Cass, T. R., Turner, J. E., Merchant, P. and Chiu, K. Y., in IEEE IEDM Tech. Dig. (1985), p. 411.Google Scholar
2. Liu, R., Williams, D. S. and Lynch, W. T., J. Appl. Phys. 63 (6), 1990 (1988).Google Scholar
3. Maex, K. et al. , J. Mater. Res., 4 (5), 1209 (1989).CrossRefGoogle Scholar
4. Thomas, O., Gas, P., Charai, A., LeGoues, F. K., Michel, A., Scilla, G. and d'Heurle, F. M., J. Appl. Phys., 64 (6), 2973 (1988).Google Scholar
5. Jiang, H., Osburn, C. M., Xiao, Z.-G., McGuire, G. and Rozgonyi, G. A., J. Electrochem. Soc., 139 (1), 206 (1992).CrossRefGoogle Scholar
6. Probst, V., Schaber, H., Mitwalsky, A., Kabza, H., hove, L. Van den and Maex, K., J. Appl. Phys. 70 (2), 708 (1991).Google Scholar
7. Osburn, C. M., J. of Electronic Materials, 19 (1), 67 (1990).Google Scholar
8. Ghandhi, S. K., VLSI Fabrication Principles (John Wiley & Sons, New York, 1983), p. 654.Google Scholar
9. Ghandhi, S. K., VLSI Fabrication Principles (John Wiley & Sons, New York, 1983) p. 70.Google Scholar
10. Tsai, J. C. C., in VLSI Technology, 2nd ed., edited by Sze, S. M. (McGraw-Hill, New York, 1988), p. 287.Google Scholar
11. Ho, C. P., Plummer, J. D., Hansen, S. E. and Dutton, R. W., IEEE Trans. Elec. Dev., 30 (11), 1438 (1983).Google Scholar
12. Tsai, J. C. C., in VLSI Technology, 2nd ed., edited by Sze, S. M. (McGraw-Hill, New York, 1988), p. 285.Google Scholar