Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T02:44:21.323Z Has data issue: false hasContentIssue false

Enhanced GaN Decomposition at Movpe Pressures

Published online by Cambridge University Press:  15 February 2011

D.D. Koleske
Affiliation:
Code 6800, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
A.E. Wickenden
Affiliation:
Code 6800, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
R.L. Henry
Affiliation:
Code 6800, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
M.E. Twigg
Affiliation:
Code 6800, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
J.C. Culbertson
Affiliation:
Code 6800, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
R.J. Gorman
Affiliation:
Code 6800, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
Get access

Abstract

GaN decomposition was studied above 800°C in flowing H2 and N2 for pressures ranging from 10 to 700 torr. From careful weighings of the GaN film on sapphire before and after annealing, the rates for GaN decomposition, Ga surface accumulation, and Ga desorption were obtained. An enhancement in the GaN decomposition rate was observed in H2 pressures greater than 100 torr. Even with this enhanced GaN decomposition, the Ga desorption rate is nearly constant at higher pressures. As a result, Ga droplets accumulate on the surface. For N2 pressures ranging from 76 to 400 torr no net enhancement in the GaN decomposition rate is observed and the GaN decomposition rate is reduced compared to identical annealing conditions in H2. This suggests that HI- is acting chemically to reduce the barrier for GaN decomposition. This may occur through a surface mediated dissociation of H2 followed by the formation of more mobile and volatile hydrogenated N and Ga species. The significance of this study for GaN growth is that by increasing the GaN decomposition, the Ga atoms diffuse farther and subsequently re-incorporate into the growing lattice, increasing the GaN crystal quality. Connections between the enhanced GaN decomposition rate and the coalescing of nucleation layer during the ramp to high temperature and the consequences for the high temperature growth are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
[2] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
[3] Mohammad, S.N., Salvador, A.A., and Morkoc, H., Proc. IEEE 83, 1306 (1995); S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992); R.F. Davis, Proc. IEEE 79, 702 (1991).Google Scholar
[4] Koleske, D.D., Wickenden, A.E., Henry, R.L., DeSisto, W.J., and Gorman, R.J., J. Appl. Phys. 84, 1998 (1998).Google Scholar
[5] Karpov, S. Yu. and Maiorov, M.A., Surf. Sci. 393, 108 (1997).Google Scholar
[6] Heckingbottom, R. in Molecular Beam Epitaxy and Heterostructures, eds. Chang, L.L. and Ploog, K., (Martinus Nijhoff, Dordrecht, 1985). p. 71.Google Scholar
[7] Koleske, D.D., Wickenden, A.E., Henry, R.L., Twigg, M.E., Culbertson, J.C., and Gorman, R.J., Appl. Phys. Lett. 73, 2018 (1998).Google Scholar
[8]. Fatemi, M., Wickenden, A.E., Koleske, D.D., Twigg, M.E., Freitas, J.A. Jr, Henry, R.L., and Gorman, R.J., Appl. Phys. Lett. 73, 608 (1998).Google Scholar
[9]. Family, F. and Meakin, P., Phys. Rev. Lett. 61, 428 (1988).Google Scholar
[10]. Munir, Z.A. and Searcy, A.W., J. Chem. Phys. 42, 4223 (1965).Google Scholar
[11]. Groh, R., Gerey, G., Bartha, L., and Pankove, J.I., Phys. Stat. Sol. A 26, 353 (1974).Google Scholar
[12] Ambacher, O., Brandt, M.S., Dimitrov, R., Metzger, T., Stutzmann, M., Fischer, R.A., Miehr, A., Bergmaier, A., and Dollinger, G., J. Vac. Sci. Technol. B 14, 3532 (1996).Google Scholar
[13] Pisch, A. and Schmid-Fetzer, R., J. Cryst. Growth 187, 329 (1998).Google Scholar
[14]. Honig, R.E. and Kramer, D.A., RCA Rev. 30, 285 (1969).Google Scholar
[15] Brandt, O., Yang, H., and Ploog, K.H., Phys. Rev. B 54, 4432 (1996).Google Scholar
[16] Johnson, W.C., Parsons, J.B., and Crew, M.C., J. Phys. Chem. 36, 2651 (1932).Google Scholar
[17] Sime, R.J. and Margrave, J.L., J. Phys. Chem. 60, 810 (1956).Google Scholar
[18] Schoonmaker, R.C., Buhl, A., and Lemley, J., J. Phys. Chem. 69, 3455 (1965).Google Scholar
[19] Bolgar, A.S., Gordienko, S.P., Ryklis, E.A., and Fesenko, V.V., in: Chemistry and Physics of the Nitrides (ed. by Samsonov, G.V.) [in Russian], (Naukova, Dumka, Kiev 1968), p. 151; also see I.G. Pichugin and D.A. Yas'kov, Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 6, 1973 (1970).Google Scholar
[20] Remy, H., Treatise on Inorganic Chemistry, (Elsevier, New York, 1960), p. 18; W.R.S. Garton, Proc. Phys. Soc. A 64, 509 (1951).Google Scholar
[21] Morishita, Y., Nomura, Y., Goto, S., and Katayama, Y., Appl. Phys. Lett. 67, 2500 (1995).Google Scholar
[22] Okamoto, Y., Hashiguchi, S., Okada, Y., and Kawabe, M., Jpn. J. Appl. Phys. 37, L1109 (1998).Google Scholar
[23]. Hersee, S.D., Ramer, J.C., and Malloy, K.J., MRS Bulletin 22, 45 (1997).Google Scholar
[24] McDermott, B.T.. Pittman, R., Gertner, E.R., Krueger, J., Kisielowski, C., Lilienthal-Weher, Z., and Weber, E., Talk D2.2 at Fall Material Research Society Meeting, Boston, 1997.Google Scholar
[25] Han, J., and Ng, T.-B.. Biefeld, R.M., Crawford, M.H., Follstaedt, D.M., Appl. Phys. Lett. 71. 3114 (1997).Google Scholar
[26] Kistenmacher, T.J.. Wickenden, D.K.. Hawley, M.E., and Leavitt, R.P., Mat. Res. Soc. Symp. Proc. 395, 261 (1996).Google Scholar
[27] Ramer, J.C., Zheng, K., Kranenberg, C.F., Banas, M., and Hersee, S.D., Mat. Res. Soc. Syrup. Proc. 395, 225 (1996).Google Scholar
[28] Kobayashi, Y., Akasaka, T.. and Kobayashi, N., Jpn. J. Appl. Phys. 37, L1208 (1998).Google Scholar