Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-30T04:02:19.585Z Has data issue: false hasContentIssue false

Eu-doped Yttria and Lutetia Thin Films Grown on Sapphire by PLD

Published online by Cambridge University Press:  15 March 2011

S. Bär
Affiliation:
Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
H. Scheife
Affiliation:
Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
G. Huber
Affiliation:
Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
J. Gonzalo
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
A. Perea
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
A. Climent Font
Affiliation:
Departamento de Fásica Aplicada y ICMAM, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain
F. Paszti
Affiliation:
Departamento de Fásica Aplicada y ICMAM, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain
M. Munz
Affiliation:
Bundesanstalt für Materialforschung und –prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
Get access

Abstract

This paper focuses on the preparation and characterization of crystalline thin films of rare-earth-doped sesquioxides (Y2O3 and Lu2O3) grown by pulsed laser deposition on single-crystal (0001) sapphire substrates. The crystal structure of the films (thicknesses between 1 nm and 500 nm) was determined by X-ray diffraction and surface X-ray diffraction analysis. These measurements show that the films were highly textured along the <111> direction. Using Rutherford backscattering analysis the correct stoichiometric composition of the films could be proved. The surface morphology of the thin films has been studied using atomic force microscopy. Crystalline films show a triangular surface morphology, which is attributed to the <111> growth direction. The emission and excitation spectra of the Eu-doped films down to a thickness of 100 nm look similar to those of the corresponding crystalline bulk material, whereas films with a thickness ≤ 20 nm show a completely different emission behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fornasiero, L., Mix, E., Peters, V., Petermann, K. and Huber, G., Cryst. Res. Tech. 34 (2), 255 (1999).Google Scholar
2. Jones, S. L., Kumar, D., Singh, R. K., and Holloway, P. H., Appl. Phys. Lett. 71 (3), 404 (1997)Google Scholar
3. Rastogi, A. C. and Sharma, R. N., J. of Appl. Phys. 71 (10), 5041 (1992).Google Scholar
4. Zhang, S. and Xiao, R., J. of Appl. Phys. 83 (7), 3842 (1998).Google Scholar
5. Cho, K. G., Kumar, D., Lee, D. G., Jones, S. L., Holloway, P. H. and Singh, R. K., Appl. Phys. Lett. 71 (23), 3335 (1997).Google Scholar
6. Korzenski, M. B., Lecoeur, P., Mercey, B., Chippaux, D., Raveau, B. and Desfeux, R., Chem. Mat. 12, 3139 (2000).Google Scholar
7. Qi, Z., Shi, C., Zhang, W., Zhang, W., and Hu, T., Appl. Phys. Lett. 81, 15 (2002)Google Scholar
8. Burmester, P., Optisch active, kristalline, Selten Erd-dotierte Y2O3-PLD-Schichten auf αAl2O3, PhD thesis, University of Hamburg, Shaker Verlag, Aachen (2003)Google Scholar