Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T18:04:59.060Z Has data issue: false hasContentIssue false

Evolution of Free Volume in Ultrasoft Magnetic FeZrN Films during Thermal Annealing

Published online by Cambridge University Press:  01 February 2011

N.G. Chechenin
Affiliation:
Materials Science Centre, University of Groningen, Groningen, The Netherlands
A. van Veen
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Delft, The Netherlands
H. Schut
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Delft, The Netherlands
A.R. Chezan
Affiliation:
Materials Science Centre, University of Groningen, Groningen, The Netherlands
D.O. Boerma
Affiliation:
Materials Science Centre, University of Groningen, Groningen, The Netherlands
T. Vystavel
Affiliation:
Materials Science Centre, University of Groningen, Groningen, The Netherlands
J.Th.M. De Hosson
Affiliation:
Materials Science Centre, University of Groningen, Groningen, The Netherlands
Get access

Abstract

The thermal stability of nanocrystalline ultra-soft magnetic (Fe98Zr2)1-xNx films with x=0.10-0.25 was studied using high-resolution transmission electron microscopy (HRTEM), positron beam analysis (PBA) and thermal desorption spectrometry (TDS). The results demonstrate that grain growth during the heat treatment is accompanied by an increase of the free volume, by nitrogen reallocation and desorption. All this can drastically deteriorate the ultra-soft magnetic properties. The desorption starts already at slightly elevated temperatures, below 100°C. However, most of the nitrogen leaves the sample at a temperature above 500°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hoffmann, H., Thin Solid Films, 58 (1979) 223, J. Appl. Phys., 35 (1964) 1790Google Scholar
2. Herzer, G., Scripta Metallurg. Materialia, 33 (1995) 1741 Google Scholar
3. Viala, B., Minor, M.K., Barnard, J.A., J. Appl. Phys, 80 (1996) 3941 Google Scholar
4. Wang, H.Y., Yang, E.Y., Bai, H.L., Wu, P., Wang, Y., Gong, F.F., J. Phys.: Condens. Matter. 9 (1997) 8443 Google Scholar
5. Jin, S., Zhu, W., Tiefel, T.H., Korenivski, V., Dover, R.B. van, and Chen, L.H., J. Appl. Phys., 81 (1997) 4042 Google Scholar
6. Shimizu, O., Nakanishi, K., Yoshida, S., J. Appl. Phys. 70 (1991) 6244 Google Scholar
7. Chezan, A.R., Craus, C.B., Chechenin, N.G., Niesen, L., and Boerma, D. O., Physica Status Solidi (a), 189 (2002) 833 Google Scholar
8. Craus, C.B., et al, to be publishedGoogle Scholar
9. Arnoldbik, W.M. and Habraken, F.H.P.M., Rep. Prog. Phys., 56 (1993) 859; J.C. Barbour and B.L. Boyle, Ch.5 in Handbook of Modern Ion Beam Materials Analysis,Google Scholar
10. Veen, A.van, Schut, H., and Mijnarends, P.E., Positron Beams and Their Applications, Ed. Coleman, P.G., World Scientific, 2000, p. 191225 Google Scholar
11. Chechenin, N.G., Veen, A.van, Galindo, R. Escobar, Shut, H., Chezan, A.R., Bronsveld, P.M., Hosson, J.Th.M. De, and Boerma, D. O., J. Phys.: Condens. Matter, 13 (2001) 5937 Google Scholar