Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-10T15:51:24.329Z Has data issue: false hasContentIssue false

Exciton Bandwidth and Coupling to Intramolecular Phonons in PTCDA

Published online by Cambridge University Press:  10 February 2011

M. H. Hennessy
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544, mhh@princeton.edu
Z. G. Soos
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544, mhh@princeton.edu
V. Bulovic
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
S. R. Forrest
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

A Holstein model is introduced for PTCDA stacks forming a one-dimensional exciton system and analyzed using Merrifield's variational method. The bandwidth and hopping integral V = 0.15 eV are obtained by comparing the absorption, emission, and fluorescence excitation of PTCDA films to solution spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Forrest, S.R., Chem. Rev. 97, 17931896 (1997).Google Scholar
2. Soos, Z.G. and Klein, D.J., in Molecular Association, Vol.1, edited by Foster, R. (Academic, New York, 1975) p. 1109.Google Scholar
3. Gomez, U., Leonhardt, M., Port, H. and Wolf, H.C., Chem. Phys. Lett. 268, 1 (1997).Google Scholar
4. Soos, Z.G., Hennessy, M.H. and Wen, G., Chem. Phys. Lett. 274, 189 (1997).Google Scholar
5. Gussoni, M., Castiglioni, C. and Zerbi, G., in Spectroscopy of Advanced Materials, Vol.19, edited by Clark, R.J.H. and Hester, R.E. (Wiley, New York, 1991) p. 251353.Google Scholar
6. Holstein, T., Ann. Physics 8, 325, 343 (1959); D. Emin, Adv. Phys. 22, 57 (1973).Google Scholar
7. Zhao, Y., Brown, D.W. and Lindenberg, K., J. Chem. Phys. 106, 5622 (1997); D. Feinberg, S. Ciuchi, and F. de Pasquale, Int. J. Mod. Phys. B 4, 1317 (1990); G. Wellein, H, Röder and H. Fehske, Phys. Rev. B 53, 9666 (1996).Google Scholar
8. Silbey, R. and Munn, R.W., J. Chem. Phys. 72, 2763 (1980); V.M. Kenkre, J.D. Anderson, D.H. Dunlap and C.B. Duke, Phys. Rev. Lett. 62, 1165 (1989).Google Scholar
9. Merrifield, R.E., J. Chem. Phys. 40, 4450 (1964).Google Scholar
10. Bulovic, V., Burrows, P.E., Forrest, S.R., Cronin, J.A. and Thompson, M.E., Chem. Phys. 210, 1 (1996).Google Scholar
11. Hennessy, M.H. and Soos, Z.G., unpublished.Google Scholar
12. Bounds, P.J., Siebrand, W., Eisenstein, I., Munn, R.W. and Petelenz, P., Chem. Phys. 95, 197 (1985).Google Scholar
13. Petelenz, P., Chem. Phys. Lett. 215, 607 (1993).Google Scholar
14. Soos, Z.G., Hennessy, M.H. and Wen, G., Chem. Phys. (in press).Google Scholar
15. Haskal, E.I., Shen, Z., Burrows, P.E. and Forrest, S.R., Phys. Rev. B 51, 4449 (1995).Google Scholar