Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T12:08:38.736Z Has data issue: false hasContentIssue false

Experiments and Monte Carlo Simulations on the Recombination Dynamics in Porous Silicon

Published online by Cambridge University Press:  28 February 2011

L. Pavesi
Affiliation:
Dip. di Fisica, Università di Trento, via Sommarive 14,1-38050 Povo, Italy
H. Eduardo Roman
Affiliation:
Institut für Theoretische Physik, Universität Giessen, Heinrich-Buff-Ring 16, D-35392Giessen, Germany
Get access

Abstract

We present a detailed study of the time-resolved photo-luminescence of porous Silicon samples with different porosities providing clear evidence of anomalous relaxation behaviour of the luminescence, which follows stretched exponential decay for a variety of experimental conditions. In addition, a numerical study of the underlying transport behaviour in these disordered materials by means of Monte-Carlo simulations has been performed. Nanometer sized particles, characterised by a distribution of radiative and non-radiative recombination times, are randomly placed at the sites of a cubic lattice forming a single three dimensional percolation cluster. Charge carriers are allowed to hop between nearest-neighbour occupied sites. The competing effect between radiative and non-radiative transitions in a single nanometer particle, as well as the effects of geometrical constraints on transport due to the complex topology, are discussed and compared to experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chen, X., Henderson, B., and O’Donnel, K. P., Appl. Phys. Lett. 83, 848 (1992).Google Scholar
2 Pavesi, L. and Ceschini, M., Phys. Rev. B 48, 17625 (1993).Google Scholar
3 Sawada, S., Hamada, N. and Ookubo, N., Phys. Rev. B 49, 5236 (1994).Google Scholar
4 Suemoto, T., Tanaka, K. and Nakajima, A., Phys. Rev. B 49, 11005 (1994).Google Scholar
5 Pavesi, L., Ceschini, M., and Roman, E. H., Thin Solid Films (1994); M. Ceschini and L. Pavesi, Proceedings of the 22th International Conference on the Physics of Semiconductors, ed. Lockwood, D. J. ( World Scientific Publishing Co, 1995).Google Scholar
6 Pavesi, L., Ceschini, M., Mariotto, G., Zanghellini, E., Bisi, O., Anderle, M., Calliari, L., Fedrizzi, M. and Fedrizzi, L., J. Appl. Phys. 75, 3151 (1994).Google Scholar
7 Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J. and Brumhead, D., J. Luminescence 57, 257 (1993).Google Scholar
8 Pfister, G. and Scher, H., Adv. Phys. 27, 747 (1978).Google Scholar
9 Fractals and disordered systems, edited by Bunde, A. and Havlin, S. (Springer, Verlag, Heidelberg, 1991).Google Scholar
10 Roman, H. E. and Pavesi, L., to be published.Google Scholar
11 Delerue, C., Lannoo, M. and Allan, G., J. Lumin. 57, 249 (1993).Google Scholar
12 Hybertsen, M. S., Phys. Rev. Lett. 75, 1514 (1994).Google Scholar
13 Fishman, G., Romestain, R. and Vial, J. C., J. Lumin. 57,235 (1993).Google Scholar
14 Ridley, B. K., J. Phys. C:Solid State Phys. 11, 2323 (1978).Google Scholar
15 Silver, M., Schoenherr, G. and Baessler, H., Phys. Rev. Lett. 48, 352 1982 Google Scholar
16 Chorin, Ben, Möller, F. and Koch, F., J. Luminescence 57, 159 (1993).Google Scholar
17 Roman, H.E., Schwartz, M., Bunde, A., and Havlin, S., Europhys. Lett. 7, 389 (1988)Google Scholar